类 SGD
- java.lang.Object
-
- org.apache.flink.ml.common.optimizer.SGD
-
- 所有已实现的接口:
Optimizer
@Internal public class SGD extends Object implements Optimizer
Stochastic Gradient Descent (SGD) is the mostly wide-used optimizer for optimizing machine learning models. It iteratively makes small adjustments to the machine learning model according to the gradient at each step, to decrease the error of the model.See https://en.wikipedia.org/wiki/Stochastic_gradient_descent.
-
-
构造器概要
构造器 构造器 说明 SGD(int maxIter, double learningRate, int globalBatchSize, double tol, double reg, double elasticNet)
-
方法概要
所有方法 实例方法 具体方法 修饰符和类型 方法 说明 org.apache.flink.streaming.api.datastream.DataStream<org.apache.flink.ml.linalg.DenseVector>optimize(org.apache.flink.streaming.api.datastream.DataStream<org.apache.flink.ml.linalg.DenseVector> initModelData, org.apache.flink.streaming.api.datastream.DataStream<org.apache.flink.ml.common.feature.LabeledPointWithWeight> trainData, LossFunc lossFunc)Optimizes the given loss function using the initial model data and the bounded training data.
-
-
-
方法详细资料
-
optimize
public org.apache.flink.streaming.api.datastream.DataStream<org.apache.flink.ml.linalg.DenseVector> optimize(org.apache.flink.streaming.api.datastream.DataStream<org.apache.flink.ml.linalg.DenseVector> initModelData, org.apache.flink.streaming.api.datastream.DataStream<org.apache.flink.ml.common.feature.LabeledPointWithWeight> trainData, LossFunc lossFunc)从接口复制的说明:OptimizerOptimizes the given loss function using the initial model data and the bounded training data.
-
-