A B C D E F G H I K L M N O P Q R S T U V W
所有类 所有程序包
所有类 所有程序包
所有类 所有程序包
A
- AgglomerativeClustering - org.apache.flink.ml.clustering.agglomerativeclustering中的类
-
An AlgoOperator that performs a hierarchical clustering using a bottom-up approach.
- AgglomerativeClustering() - 类 的构造器org.apache.flink.ml.clustering.agglomerativeclustering.AgglomerativeClustering
- AgglomerativeClusteringParams<T> - org.apache.flink.ml.clustering.agglomerativeclustering中的接口
-
Params of
AgglomerativeClustering. - ALPHA - 接口 中的静态变量org.apache.flink.ml.classification.logisticregression.OnlineLogisticRegressionParams
- ALPHA1 - 接口 中的静态变量org.apache.flink.ml.recommendation.swing.SwingParams
- ALPHA2 - 接口 中的静态变量org.apache.flink.ml.recommendation.swing.SwingParams
- ALPHABET_ASC_ORDER - 接口 中的静态变量org.apache.flink.ml.feature.stringindexer.StringIndexerParams
- ALPHABET_DESC_ORDER - 接口 中的静态变量org.apache.flink.ml.feature.stringindexer.StringIndexerParams
- ANOVATest - org.apache.flink.ml.stats.anovatest中的类
-
An AlgoOperator which implements the ANOVA test algorithm.
- ANOVATest() - 类 的构造器org.apache.flink.ml.stats.anovatest.ANOVATest
- ANOVATestParams<T> - org.apache.flink.ml.stats.anovatest中的接口
-
Params for
ANOVATest. - ARBITRARY_ORDER - 接口 中的静态变量org.apache.flink.ml.feature.stringindexer.StringIndexerParams
- AREA_UNDER_LORENZ - 接口 中的静态变量org.apache.flink.ml.evaluation.binaryclassification.BinaryClassificationEvaluatorParams
- AREA_UNDER_PR - 接口 中的静态变量org.apache.flink.ml.evaluation.binaryclassification.BinaryClassificationEvaluatorParams
- AREA_UNDER_ROC - 接口 中的静态变量org.apache.flink.ml.evaluation.binaryclassification.BinaryClassificationEvaluatorParams
- areaUnderLorenz - 类 中的变量org.apache.flink.ml.evaluation.binaryclassification.BinaryClassificationEvaluator.BinaryMetrics
- areaUnderPR - 类 中的变量org.apache.flink.ml.evaluation.binaryclassification.BinaryClassificationEvaluator.BinaryMetrics
- areaUnderROC - 类 中的变量org.apache.flink.ml.evaluation.binaryclassification.BinaryClassificationEvaluator.BinaryMetrics
- arrayToVector(Object...) - 类 中的静态方法org.apache.flink.ml.Functions
-
Converts a column of arrays of numeric type into a column of
DenseVectorinstances. - ArrayToVectorFunction() - 类 的构造器org.apache.flink.ml.Functions.ArrayToVectorFunction
B
- BETA - 接口 中的静态变量org.apache.flink.ml.classification.logisticregression.OnlineLogisticRegressionParams
- BETA - 接口 中的静态变量org.apache.flink.ml.recommendation.swing.SwingParams
- Binarizer - org.apache.flink.ml.feature.binarizer中的类
-
A Transformer that binarizes the columns of continuous features by the given thresholds.
- Binarizer() - 类 的构造器org.apache.flink.ml.feature.binarizer.Binarizer
- BinarizerParams<T> - org.apache.flink.ml.feature.binarizer中的接口
-
Params of
Binarizer. - BINARY - 接口 中的静态变量org.apache.flink.ml.feature.countvectorizer.CountVectorizerModelParams
- BINARY - 接口 中的静态变量org.apache.flink.ml.feature.hashingtf.HashingTFParams
-
Supported options to decide whether each dimension of the output vector is binary or not.
- BinaryClassificationEvaluator - org.apache.flink.ml.evaluation.binaryclassification中的类
-
An AlgoOperator which calculates the evaluation metrics for binary classification.
- BinaryClassificationEvaluator() - 类 的构造器org.apache.flink.ml.evaluation.binaryclassification.BinaryClassificationEvaluator
- BinaryClassificationEvaluator.BinaryMetrics - org.apache.flink.ml.evaluation.binaryclassification中的类
-
The evaluation metrics for binary classification.
- BinaryClassificationEvaluator.BinarySummary - org.apache.flink.ml.evaluation.binaryclassification中的类
-
Binary Summary of data in one worker.
- BinaryClassificationEvaluatorParams<T> - org.apache.flink.ml.evaluation.binaryclassification中的接口
-
Params of BinaryClassificationEvaluator.
- BinaryLogisticLoss - org.apache.flink.ml.common.lossfunc中的类
-
The loss function for binary logistic loss.
- BinaryMetrics() - 类 的构造器org.apache.flink.ml.evaluation.binaryclassification.BinaryClassificationEvaluator.BinaryMetrics
- BinaryMetrics(long, double) - 类 的构造器org.apache.flink.ml.evaluation.binaryclassification.BinaryClassificationEvaluator.BinaryMetrics
- BinarySummary() - 类 的构造器org.apache.flink.ml.evaluation.binaryclassification.BinaryClassificationEvaluator.BinarySummary
- BinarySummary(Integer, double, long, long) - 类 的构造器org.apache.flink.ml.evaluation.binaryclassification.BinaryClassificationEvaluator.BinarySummary
- binEdges - 类 中的变量org.apache.flink.ml.feature.kbinsdiscretizer.KBinsDiscretizerModelData
-
The edges of bins for each column, e.g., binEdges[0] is the edges for features at 0-th dimension.
- Bucketizer - org.apache.flink.ml.feature.bucketizer中的类
-
A Transformer that maps multiple columns of continuous features to multiple columns of discrete features, i.e., buckets indices.
- Bucketizer() - 类 的构造器org.apache.flink.ml.feature.bucketizer.Bucketizer
- BucketizerParams<T> - org.apache.flink.ml.feature.bucketizer中的接口
-
Params for
Bucketizer. - BucketizerParams.SplitsArrayValidator - org.apache.flink.ml.feature.bucketizer中的类
-
Param validator for splitsArray.
C
- canEqual(Object) - 类 中的方法org.apache.flink.ml.common.typeinfo.PriorityQueueTypeInfo
- CASE_SENSITIVE - 接口 中的静态变量org.apache.flink.ml.feature.stopwordsremover.StopWordsRemoverParams
- CATEGORICAL - 接口 中的静态变量org.apache.flink.ml.feature.univariatefeatureselector.UnivariateFeatureSelectorParams
- categoryMaps - 类 中的变量org.apache.flink.ml.feature.vectorindexer.VectorIndexerModelData
-
Index of feature values.
- centroids - 类 中的变量org.apache.flink.ml.clustering.kmeans.KMeansModelData
- ChiSqTest - org.apache.flink.ml.stats.chisqtest中的类
-
An AlgoOperator which implements the Chi-square test algorithm.
- ChiSqTest() - 类 的构造器org.apache.flink.ml.stats.chisqtest.ChiSqTest
- ChiSqTestParams<T> - org.apache.flink.ml.stats.chisqtest中的接口
-
Params for
ChiSqTest. - coefficient - 类 中的变量org.apache.flink.ml.classification.linearsvc.LinearSVCModelData
- coefficient - 类 中的变量org.apache.flink.ml.regression.linearregression.LinearRegressionModelData
- compress() - 类 中的方法org.apache.flink.ml.common.util.QuantileSummary
-
Returns a new summary that compresses the summary statistics and the head buffer.
- COMPUTE_FULL_TREE - 接口 中的静态变量org.apache.flink.ml.clustering.agglomerativeclustering.AgglomerativeClusteringParams
- computeGradient(LabeledPointWithWeight, DenseVector, DenseVector) - 类 中的方法org.apache.flink.ml.common.lossfunc.BinaryLogisticLoss
- computeGradient(LabeledPointWithWeight, DenseVector, DenseVector) - 类 中的方法org.apache.flink.ml.common.lossfunc.HingeLoss
- computeGradient(LabeledPointWithWeight, DenseVector, DenseVector) - 类 中的方法org.apache.flink.ml.common.lossfunc.LeastSquareLoss
- computeGradient(LabeledPointWithWeight, DenseVector, DenseVector) - 接口 中的方法org.apache.flink.ml.common.lossfunc.LossFunc
-
Computes the gradient on the given data point and adds the computed gradient to cumGradient.
- computeLoss(LabeledPointWithWeight, DenseVector) - 类 中的方法org.apache.flink.ml.common.lossfunc.BinaryLogisticLoss
- computeLoss(LabeledPointWithWeight, DenseVector) - 类 中的方法org.apache.flink.ml.common.lossfunc.HingeLoss
- computeLoss(LabeledPointWithWeight, DenseVector) - 类 中的方法org.apache.flink.ml.common.lossfunc.LeastSquareLoss
- computeLoss(LabeledPointWithWeight, DenseVector) - 接口 中的方法org.apache.flink.ml.common.lossfunc.LossFunc
-
Computes the loss on the given data point.
- CONTINUOUS - 接口 中的静态变量org.apache.flink.ml.feature.univariatefeatureselector.UnivariateFeatureSelectorParams
- copy(PriorityQueue<T>) - 类 中的方法org.apache.flink.ml.common.typeinfo.PriorityQueueSerializer
- copy(PriorityQueue<T>, PriorityQueue<T>) - 类 中的方法org.apache.flink.ml.common.typeinfo.PriorityQueueSerializer
- copy(DataInputView, DataOutputView) - 类 中的方法org.apache.flink.ml.common.typeinfo.PriorityQueueSerializer
- count - 类 中的变量org.apache.flink.ml.evaluation.binaryclassification.BinaryClassificationEvaluator.BinaryMetrics
- CountVectorizer - org.apache.flink.ml.feature.countvectorizer中的类
-
An Estimator which converts a collection of text documents to vectors of token counts.
- CountVectorizer() - 类 的构造器org.apache.flink.ml.feature.countvectorizer.CountVectorizer
- CountVectorizerModel - org.apache.flink.ml.feature.countvectorizer中的类
-
A Model which transforms data using the model data computed by
CountVectorizer. - CountVectorizerModel() - 类 的构造器org.apache.flink.ml.feature.countvectorizer.CountVectorizerModel
- CountVectorizerModelData - org.apache.flink.ml.feature.countvectorizer中的类
-
Model data of
CountVectorizerModel. - CountVectorizerModelData() - 类 的构造器org.apache.flink.ml.feature.countvectorizer.CountVectorizerModelData
- CountVectorizerModelData(String[]) - 类 的构造器org.apache.flink.ml.feature.countvectorizer.CountVectorizerModelData
- CountVectorizerModelData.ModelDataDecoder - org.apache.flink.ml.feature.countvectorizer中的类
-
Decoder for
CountVectorizerModelData. - CountVectorizerModelData.ModelDataEncoder - org.apache.flink.ml.feature.countvectorizer中的类
-
Encoder for
CountVectorizerModelData. - CountVectorizerModelParams<T> - org.apache.flink.ml.feature.countvectorizer中的接口
-
Params for
CountVectorizerModel. - CountVectorizerParams<T> - org.apache.flink.ml.feature.countvectorizer中的接口
-
Params of
CountVectorizer. - createInstance() - 类 中的方法org.apache.flink.ml.common.typeinfo.PriorityQueueSerializer
- createModel(DataStream<Integer>, StreamTableEnvironment) - 类 中的方法org.apache.flink.ml.feature.lsh.MinHashLSH
- createReader(Configuration, FSDataInputStream) - 类 中的方法org.apache.flink.ml.classification.knn.KnnModelData.ModelDataDecoder
- createReader(Configuration, FSDataInputStream) - 类 中的方法org.apache.flink.ml.classification.linearsvc.LinearSVCModelData.ModelDataDecoder
- createReader(Configuration, FSDataInputStream) - 类 中的方法org.apache.flink.ml.classification.logisticregression.LogisticRegressionModelDataUtil.ModelDataDecoder
- createReader(Configuration, FSDataInputStream) - 类 中的方法org.apache.flink.ml.classification.naivebayes.NaiveBayesModelData.ModelDataDecoder
- createReader(Configuration, FSDataInputStream) - 类 中的方法org.apache.flink.ml.clustering.kmeans.KMeansModelData.ModelDataDecoder
- createReader(Configuration, FSDataInputStream) - 类 中的方法org.apache.flink.ml.feature.countvectorizer.CountVectorizerModelData.ModelDataDecoder
- createReader(Configuration, FSDataInputStream) - 类 中的方法org.apache.flink.ml.feature.idf.IDFModelData.ModelDataDecoder
- createReader(Configuration, FSDataInputStream) - 类 中的方法org.apache.flink.ml.feature.imputer.ImputerModelData.ModelDataDecoder
- createReader(Configuration, FSDataInputStream) - 类 中的方法org.apache.flink.ml.feature.kbinsdiscretizer.KBinsDiscretizerModelData.ModelDataDecoder
- createReader(Configuration, FSDataInputStream) - 类 中的方法org.apache.flink.ml.feature.maxabsscaler.MaxAbsScalerModelData.ModelDataDecoder
- createReader(Configuration, FSDataInputStream) - 类 中的方法org.apache.flink.ml.feature.minmaxscaler.MinMaxScalerModelData.ModelDataDecoder
- createReader(Configuration, FSDataInputStream) - 类 中的方法org.apache.flink.ml.feature.onehotencoder.OneHotEncoderModelData.ModelDataStreamFormat
- createReader(Configuration, FSDataInputStream) - 类 中的方法org.apache.flink.ml.feature.robustscaler.RobustScalerModelData.ModelDataDecoder
- createReader(Configuration, FSDataInputStream) - 类 中的方法org.apache.flink.ml.feature.standardscaler.StandardScalerModelData.ModelDataDecoder
- createReader(Configuration, FSDataInputStream) - 类 中的方法org.apache.flink.ml.feature.stringindexer.StringIndexerModelData.ModelDataDecoder
- createReader(Configuration, FSDataInputStream) - 类 中的方法org.apache.flink.ml.feature.univariatefeatureselector.UnivariateFeatureSelectorModelData.ModelDataDecoder
- createReader(Configuration, FSDataInputStream) - 类 中的方法org.apache.flink.ml.feature.variancethresholdselector.VarianceThresholdSelectorModelData.ModelDataDecoder
- createReader(Configuration, FSDataInputStream) - 类 中的方法org.apache.flink.ml.feature.vectorindexer.VectorIndexerModelData.ModelDataDecoder
- createReader(Configuration, FSDataInputStream) - 类 中的方法org.apache.flink.ml.regression.linearregression.LinearRegressionModelData.ModelDataDecoder
- createSerializer(ExecutionConfig) - 类 中的方法org.apache.flink.ml.common.typeinfo.PriorityQueueTypeInfo
- createTypeInfo(Type, Map<String, TypeInformation<?>>) - 类 中的方法org.apache.flink.ml.common.typeinfo.QuantileSummaryTypeInfoFactory
- curNegative - 类 中的变量org.apache.flink.ml.evaluation.binaryclassification.BinaryClassificationEvaluator.BinarySummary
- curPositive - 类 中的变量org.apache.flink.ml.evaluation.binaryclassification.BinaryClassificationEvaluator.BinarySummary
D
- DCT - org.apache.flink.ml.feature.dct中的类
-
A Transformer that takes the 1D discrete cosine transform of a real vector.
- DCT() - 类 的构造器org.apache.flink.ml.feature.dct.DCT
- DCTParams<T> - org.apache.flink.ml.feature.dct中的接口
-
Params for
DCT. - DEGREE - 接口 中的静态变量org.apache.flink.ml.feature.polynomialexpansion.PolynomialExpansionParams
- delta - 类 中的变量org.apache.flink.ml.common.util.QuantileSummary.StatsTuple
- deserialize(PriorityQueue<T>, DataInputView) - 类 中的方法org.apache.flink.ml.common.typeinfo.PriorityQueueSerializer
- deserialize(DataInputView) - 类 中的方法org.apache.flink.ml.common.typeinfo.PriorityQueueSerializer
- DISTANCE_THRESHOLD - 接口 中的静态变量org.apache.flink.ml.clustering.agglomerativeclustering.AgglomerativeClusteringParams
- docFreq - 类 中的变量org.apache.flink.ml.feature.idf.IDFModelData
-
Document frequency for all terms after filtering out infrequent terms.
- DROP_LAST - 接口 中的静态变量org.apache.flink.ml.feature.onehotencoder.OneHotEncoderParams
- duplicate() - 类 中的方法org.apache.flink.ml.common.typeinfo.PriorityQueueSerializer
E
- ElementwiseProduct - org.apache.flink.ml.feature.elementwiseproduct中的类
-
A Transformer that multiplies each input vector with a given scaling vector using Hadamard product.
- ElementwiseProduct() - 类 的构造器org.apache.flink.ml.feature.elementwiseproduct.ElementwiseProduct
- ElementwiseProductParams<T> - org.apache.flink.ml.feature.elementwiseproduct中的接口
-
Params of
ElementwiseProduct. - encode(Tuple2<Integer, Integer>, OutputStream) - 类 中的方法org.apache.flink.ml.feature.onehotencoder.OneHotEncoderModelData.ModelDataEncoder
- encode(KnnModelData, OutputStream) - 类 中的方法org.apache.flink.ml.classification.knn.KnnModelData.ModelDataEncoder
- encode(LinearSVCModelData, OutputStream) - 类 中的方法org.apache.flink.ml.classification.linearsvc.LinearSVCModelData.ModelDataEncoder
- encode(LogisticRegressionModelData, OutputStream) - 类 中的方法org.apache.flink.ml.classification.logisticregression.LogisticRegressionModelDataUtil.ModelDataEncoder
- encode(NaiveBayesModelData, OutputStream) - 类 中的方法org.apache.flink.ml.classification.naivebayes.NaiveBayesModelData.ModelDataEncoder
- encode(KMeansModelData, OutputStream) - 类 中的方法org.apache.flink.ml.clustering.kmeans.KMeansModelData.ModelDataEncoder
- encode(CountVectorizerModelData, OutputStream) - 类 中的方法org.apache.flink.ml.feature.countvectorizer.CountVectorizerModelData.ModelDataEncoder
- encode(IDFModelData, OutputStream) - 类 中的方法org.apache.flink.ml.feature.idf.IDFModelData.ModelDataEncoder
- encode(ImputerModelData, OutputStream) - 类 中的方法org.apache.flink.ml.feature.imputer.ImputerModelData.ModelDataEncoder
- encode(KBinsDiscretizerModelData, OutputStream) - 类 中的方法org.apache.flink.ml.feature.kbinsdiscretizer.KBinsDiscretizerModelData.ModelDataEncoder
- encode(MinHashLSHModelData, OutputStream) - 类 中的方法org.apache.flink.ml.feature.lsh.MinHashLSHModelData.ModelDataEncoder
- encode(MaxAbsScalerModelData, OutputStream) - 类 中的方法org.apache.flink.ml.feature.maxabsscaler.MaxAbsScalerModelData.ModelDataEncoder
- encode(MinMaxScalerModelData, OutputStream) - 类 中的方法org.apache.flink.ml.feature.minmaxscaler.MinMaxScalerModelData.ModelDataEncoder
- encode(RobustScalerModelData, OutputStream) - 类 中的方法org.apache.flink.ml.feature.robustscaler.RobustScalerModelData.ModelDataEncoder
- encode(StandardScalerModelData, OutputStream) - 类 中的方法org.apache.flink.ml.feature.standardscaler.StandardScalerModelData.ModelDataEncoder
- encode(StringIndexerModelData, OutputStream) - 类 中的方法org.apache.flink.ml.feature.stringindexer.StringIndexerModelData.ModelDataEncoder
- encode(UnivariateFeatureSelectorModelData, OutputStream) - 类 中的方法org.apache.flink.ml.feature.univariatefeatureselector.UnivariateFeatureSelectorModelData.ModelDataEncoder
- encode(VarianceThresholdSelectorModelData, OutputStream) - 类 中的方法org.apache.flink.ml.feature.variancethresholdselector.VarianceThresholdSelectorModelData.ModelDataEncoder
- encode(VectorIndexerModelData, OutputStream) - 类 中的方法org.apache.flink.ml.feature.vectorindexer.VectorIndexerModelData.ModelDataEncoder
- encode(LinearRegressionModelData, OutputStream) - 类 中的方法org.apache.flink.ml.regression.linearregression.LinearRegressionModelData.ModelDataEncoder
- endInput() - 类 中的方法org.apache.flink.ml.feature.minmaxscaler.MinMaxScaler.MinMaxReduceFunctionOperator
- equals(Object) - 类 中的方法org.apache.flink.ml.common.typeinfo.PriorityQueueSerializer
- equals(Object) - 类 中的方法org.apache.flink.ml.common.typeinfo.PriorityQueueTypeInfo
- eval(double[]) - 类 中的方法org.apache.flink.ml.Functions.ArrayToVectorFunction
- eval(Double[]) - 类 中的方法org.apache.flink.ml.Functions.ArrayToVectorFunction
- eval(Number[]) - 类 中的方法org.apache.flink.ml.Functions.ArrayToVectorFunction
- eval(String) - 类 中的方法org.apache.flink.ml.feature.tokenizer.Tokenizer.TokenizerUdf
- eval(String[]) - 类 中的方法org.apache.flink.ml.feature.stopwordsremover.StopWordsRemover.RemoveStopWordsFunction
- eval(String[], int) - 类 中的方法org.apache.flink.ml.feature.ngram.NGram.NGramUdf
- eval(String, String, Boolean, boolean, int) - 类 中的方法org.apache.flink.ml.feature.regextokenizer.RegexTokenizer.RegexTokenizerUdf
- eval(Vector) - 类 中的方法org.apache.flink.ml.Functions.VectorToArrayFunction
F
- FDR - 接口 中的静态变量org.apache.flink.ml.feature.univariatefeatureselector.UnivariateFeatureSelectorParams
- FEATURE_TYPE - 接口 中的静态变量org.apache.flink.ml.feature.univariatefeatureselector.UnivariateFeatureSelectorParams
-
Supported options of the feature type.
- FeatureHasher - org.apache.flink.ml.feature.featurehasher中的类
-
A Transformer that transforms a set of categorical or numerical features into a sparse vector of a specified dimension.
- FeatureHasher() - 类 的构造器org.apache.flink.ml.feature.featurehasher.FeatureHasher
- FeatureHasherParams<T> - org.apache.flink.ml.feature.featurehasher中的接口
-
Params of
FeatureHasher. - featureNormSquares - 类 中的变量org.apache.flink.ml.classification.knn.KnnModelData
- fit(Table...) - 类 中的方法org.apache.flink.ml.classification.knn.Knn
- fit(Table...) - 类 中的方法org.apache.flink.ml.classification.linearsvc.LinearSVC
- fit(Table...) - 类 中的方法org.apache.flink.ml.classification.logisticregression.LogisticRegression
- fit(Table...) - 类 中的方法org.apache.flink.ml.classification.logisticregression.OnlineLogisticRegression
- fit(Table...) - 类 中的方法org.apache.flink.ml.classification.naivebayes.NaiveBayes
- fit(Table...) - 类 中的方法org.apache.flink.ml.clustering.kmeans.KMeans
- fit(Table...) - 类 中的方法org.apache.flink.ml.clustering.kmeans.OnlineKMeans
- fit(Table...) - 类 中的方法org.apache.flink.ml.feature.countvectorizer.CountVectorizer
- fit(Table...) - 类 中的方法org.apache.flink.ml.feature.idf.IDF
- fit(Table...) - 类 中的方法org.apache.flink.ml.feature.imputer.Imputer
- fit(Table...) - 类 中的方法org.apache.flink.ml.feature.kbinsdiscretizer.KBinsDiscretizer
- fit(Table...) - 类 中的方法org.apache.flink.ml.feature.maxabsscaler.MaxAbsScaler
- fit(Table...) - 类 中的方法org.apache.flink.ml.feature.minmaxscaler.MinMaxScaler
- fit(Table...) - 类 中的方法org.apache.flink.ml.feature.onehotencoder.OneHotEncoder
- fit(Table...) - 类 中的方法org.apache.flink.ml.feature.robustscaler.RobustScaler
- fit(Table...) - 类 中的方法org.apache.flink.ml.feature.standardscaler.OnlineStandardScaler
- fit(Table...) - 类 中的方法org.apache.flink.ml.feature.standardscaler.StandardScaler
- fit(Table...) - 类 中的方法org.apache.flink.ml.feature.stringindexer.StringIndexer
- fit(Table...) - 类 中的方法org.apache.flink.ml.feature.univariatefeatureselector.UnivariateFeatureSelector
- fit(Table...) - 类 中的方法org.apache.flink.ml.feature.variancethresholdselector.VarianceThresholdSelector
- fit(Table...) - 类 中的方法org.apache.flink.ml.feature.vectorindexer.VectorIndexer
- fit(Table...) - 类 中的方法org.apache.flink.ml.regression.linearregression.LinearRegression
- FPR - 接口 中的静态变量org.apache.flink.ml.feature.univariatefeatureselector.UnivariateFeatureSelectorParams
- FREQUENCY_ASC_ORDER - 接口 中的静态变量org.apache.flink.ml.feature.stringindexer.StringIndexerParams
- FREQUENCY_DESC_ORDER - 接口 中的静态变量org.apache.flink.ml.feature.stringindexer.StringIndexerParams
- Functions - org.apache.flink.ml中的类
-
Built-in table functions for data transformations.
- Functions() - 类 的构造器org.apache.flink.ml.Functions
- Functions.ArrayToVectorFunction - org.apache.flink.ml中的类
-
A
ScalarFunctionthat converts a column of arrays of numeric type into a column ofDenseVectorinstances. - Functions.VectorToArrayFunction - org.apache.flink.ml中的类
-
A
ScalarFunctionthat converts a column ofVectors into a column of double arrays. - FValueTest - org.apache.flink.ml.stats.fvaluetest中的类
-
An AlgoOperator which implements the F-value test algorithm.
- FValueTest() - 类 的构造器org.apache.flink.ml.stats.fvaluetest.FValueTest
- FValueTestParams<T> - org.apache.flink.ml.stats.fvaluetest中的接口
-
Params for
FValueTest. - FWE - 接口 中的静态变量org.apache.flink.ml.feature.univariatefeatureselector.UnivariateFeatureSelectorParams
G
- g - 类 中的变量org.apache.flink.ml.common.util.QuantileSummary.StatsTuple
- GAPS - 接口 中的静态变量org.apache.flink.ml.feature.regextokenizer.RegexTokenizerParams
- generateModelData(int, int, int, long) - 类 中的静态方法org.apache.flink.ml.feature.lsh.MinHashLSHModelData
- generateRandomModelData(StreamTableEnvironment, int, int) - 类 中的静态方法org.apache.flink.ml.classification.logisticregression.LogisticRegressionModelDataUtil
-
Generates a Table containing a
LogisticRegressionModelDatainstance with randomly generated coefficient. - generateRandomModelData(StreamTableEnvironment, int, int, double, long) - 类 中的静态方法org.apache.flink.ml.clustering.kmeans.KMeansModelData
-
Generates a Table containing a
KMeansModelDatainstance with randomly generated centroids. - getAlpha() - 接口 中的方法org.apache.flink.ml.classification.logisticregression.OnlineLogisticRegressionParams
- getAlpha1() - 接口 中的方法org.apache.flink.ml.recommendation.swing.SwingParams
- getAlpha2() - 接口 中的方法org.apache.flink.ml.recommendation.swing.SwingParams
- getArity() - 类 中的方法org.apache.flink.ml.common.typeinfo.PriorityQueueTypeInfo
- getAvailableLocales() - 类 中的静态方法org.apache.flink.ml.feature.stopwordsremover.StopWordsRemover
-
Returns a set of all installed locales.
- getBeta() - 接口 中的方法org.apache.flink.ml.classification.logisticregression.OnlineLogisticRegressionParams
- getBeta() - 接口 中的方法org.apache.flink.ml.recommendation.swing.SwingParams
- getBinary() - 接口 中的方法org.apache.flink.ml.feature.countvectorizer.CountVectorizerModelParams
- getBinary() - 接口 中的方法org.apache.flink.ml.feature.hashingtf.HashingTFParams
- getCaseSensitive() - 接口 中的方法org.apache.flink.ml.feature.stopwordsremover.StopWordsRemoverParams
- getCompressThreshold() - 类 中的方法org.apache.flink.ml.common.util.QuantileSummary
- getComputeFullTree() - 接口 中的方法org.apache.flink.ml.clustering.agglomerativeclustering.AgglomerativeClusteringParams
- getCount() - 类 中的方法org.apache.flink.ml.common.util.QuantileSummary
- getDefaultOrUS() - 类 中的静态方法org.apache.flink.ml.feature.stopwordsremover.StopWordsRemover
-
Returns system default locale, or
Locale.USif the default locale is not in available locales in JVM. - getDegree() - 接口 中的方法org.apache.flink.ml.feature.polynomialexpansion.PolynomialExpansionParams
- getDistanceThreshold() - 接口 中的方法org.apache.flink.ml.clustering.agglomerativeclustering.AgglomerativeClusteringParams
- getDropLast() - 接口 中的方法org.apache.flink.ml.feature.onehotencoder.OneHotEncoderParams
- getElementTypeInfo() - 类 中的方法org.apache.flink.ml.common.typeinfo.PriorityQueueTypeInfo
- getFeatureType() - 接口 中的方法org.apache.flink.ml.feature.univariatefeatureselector.UnivariateFeatureSelectorParams
- getGaps() - 接口 中的方法org.apache.flink.ml.feature.regextokenizer.RegexTokenizerParams
- getHeadBuffer() - 类 中的方法org.apache.flink.ml.common.util.QuantileSummary
- getIndices() - 接口 中的方法org.apache.flink.ml.feature.vectorslicer.VectorSlicerParams
- getInitMode() - 接口 中的方法org.apache.flink.ml.clustering.kmeans.KMeansParams
- getInputSizes() - 接口 中的方法org.apache.flink.ml.feature.vectorassembler.VectorAssemblerParams
- getInverse() - 接口 中的方法org.apache.flink.ml.feature.dct.DCTParams
- getItemCol() - 接口 中的方法org.apache.flink.ml.recommendation.swing.SwingParams
- getK() - 接口 中的方法org.apache.flink.ml.classification.knn.KnnModelParams
- getK() - 接口 中的方法org.apache.flink.ml.clustering.kmeans.KMeansModelParams
- getK() - 接口 中的方法org.apache.flink.ml.recommendation.swing.SwingParams
- getLabelType() - 接口 中的方法org.apache.flink.ml.feature.univariatefeatureselector.UnivariateFeatureSelectorParams
- getLength() - 类 中的方法org.apache.flink.ml.common.typeinfo.PriorityQueueSerializer
- getLinkage() - 接口 中的方法org.apache.flink.ml.clustering.agglomerativeclustering.AgglomerativeClusteringParams
- getLocale() - 接口 中的方法org.apache.flink.ml.feature.stopwordsremover.StopWordsRemoverParams
- getLower() - 接口 中的方法org.apache.flink.ml.feature.robustscaler.RobustScalerParams
- getMax() - 接口 中的方法org.apache.flink.ml.feature.minmaxscaler.MinMaxScalerParams
- getMaxCategories() - 接口 中的方法org.apache.flink.ml.feature.vectorindexer.VectorIndexerParams
- getMaxDF() - 接口 中的方法org.apache.flink.ml.feature.countvectorizer.CountVectorizerParams
- getMaxIndexNum() - 接口 中的方法org.apache.flink.ml.feature.stringindexer.StringIndexerParams
- getMaxUserBehavior() - 接口 中的方法org.apache.flink.ml.recommendation.swing.SwingParams
- getMaxUserNumPerItem() - 接口 中的方法org.apache.flink.ml.recommendation.swing.SwingParams
- getMetricsNames() - 接口 中的方法org.apache.flink.ml.evaluation.binaryclassification.BinaryClassificationEvaluatorParams
- getMin() - 接口 中的方法org.apache.flink.ml.feature.minmaxscaler.MinMaxScalerParams
- getMinDF() - 接口 中的方法org.apache.flink.ml.feature.countvectorizer.CountVectorizerParams
- getMinDocFreq() - 接口 中的方法org.apache.flink.ml.feature.idf.IDFParams
- getMinTF() - 接口 中的方法org.apache.flink.ml.feature.countvectorizer.CountVectorizerModelParams
- getMinTokenLength() - 接口 中的方法org.apache.flink.ml.feature.regextokenizer.RegexTokenizerParams
- getMinUserBehavior() - 接口 中的方法org.apache.flink.ml.recommendation.swing.SwingParams
- getMissingValue() - 接口 中的方法org.apache.flink.ml.feature.imputer.ImputerModelParams
- getModelData() - 类 中的方法org.apache.flink.ml.classification.knn.KnnModel
- getModelData() - 类 中的方法org.apache.flink.ml.classification.linearsvc.LinearSVCModel
- getModelData() - 类 中的方法org.apache.flink.ml.classification.logisticregression.LogisticRegressionModel
- getModelData() - 类 中的方法org.apache.flink.ml.classification.logisticregression.OnlineLogisticRegressionModel
- getModelData() - 类 中的方法org.apache.flink.ml.classification.naivebayes.NaiveBayesModel
- getModelData() - 类 中的方法org.apache.flink.ml.clustering.kmeans.KMeansModel
- getModelData() - 类 中的方法org.apache.flink.ml.clustering.kmeans.OnlineKMeansModel
- getModelData() - 类 中的方法org.apache.flink.ml.feature.countvectorizer.CountVectorizerModel
- getModelData() - 类 中的方法org.apache.flink.ml.feature.idf.IDFModel
- getModelData() - 类 中的方法org.apache.flink.ml.feature.imputer.ImputerModel
- getModelData() - 类 中的方法org.apache.flink.ml.feature.kbinsdiscretizer.KBinsDiscretizerModel
- getModelData() - 类 中的方法org.apache.flink.ml.feature.maxabsscaler.MaxAbsScalerModel
- getModelData() - 类 中的方法org.apache.flink.ml.feature.minmaxscaler.MinMaxScalerModel
- getModelData() - 类 中的方法org.apache.flink.ml.feature.onehotencoder.OneHotEncoderModel
- getModelData() - 类 中的方法org.apache.flink.ml.feature.robustscaler.RobustScalerModel
- getModelData() - 类 中的方法org.apache.flink.ml.feature.standardscaler.OnlineStandardScalerModel
- getModelData() - 类 中的方法org.apache.flink.ml.feature.standardscaler.StandardScalerModel
- getModelData() - 类 中的方法org.apache.flink.ml.feature.stringindexer.IndexToStringModel
- getModelData() - 类 中的方法org.apache.flink.ml.feature.stringindexer.StringIndexerModel
- getModelData() - 类 中的方法org.apache.flink.ml.feature.univariatefeatureselector.UnivariateFeatureSelectorModel
- getModelData() - 类 中的方法org.apache.flink.ml.feature.variancethresholdselector.VarianceThresholdSelectorModel
- getModelData() - 类 中的方法org.apache.flink.ml.feature.vectorindexer.VectorIndexerModel
- getModelData() - 类 中的方法org.apache.flink.ml.regression.linearregression.LinearRegressionModel
- getModelDataByteStream(Table) - 类 中的静态方法org.apache.flink.ml.classification.logisticregression.LogisticRegressionModelDataUtil
-
Converts the table model to a data stream of bytes.
- getModelDataStream(Table) - 类 中的静态方法org.apache.flink.ml.classification.knn.KnnModelData
-
Converts the table model to a data stream.
- getModelDataStream(Table) - 类 中的静态方法org.apache.flink.ml.classification.linearsvc.LinearSVCModelData
-
Converts the table model to a data stream.
- getModelDataStream(Table) - 类 中的静态方法org.apache.flink.ml.classification.logisticregression.LogisticRegressionModelDataUtil
-
Converts the table model to a data stream.
- getModelDataStream(Table) - 类 中的静态方法org.apache.flink.ml.classification.naivebayes.NaiveBayesModelData
-
Converts the table model to a data stream.
- getModelDataStream(Table) - 类 中的静态方法org.apache.flink.ml.clustering.kmeans.KMeansModelData
-
Converts the table model to a data stream.
- getModelDataStream(Table) - 类 中的静态方法org.apache.flink.ml.feature.countvectorizer.CountVectorizerModelData
-
Converts the table model to a data stream.
- getModelDataStream(Table) - 类 中的静态方法org.apache.flink.ml.feature.idf.IDFModelData
-
Converts the table model to a data stream.
- getModelDataStream(Table) - 类 中的静态方法org.apache.flink.ml.feature.imputer.ImputerModelData
-
Converts the table model to a data stream.
- getModelDataStream(Table) - 类 中的静态方法org.apache.flink.ml.feature.kbinsdiscretizer.KBinsDiscretizerModelData
-
Converts the table model to a data stream.
- getModelDataStream(Table) - 类 中的静态方法org.apache.flink.ml.feature.maxabsscaler.MaxAbsScalerModelData
-
Converts the table model to a data stream.
- getModelDataStream(Table) - 类 中的静态方法org.apache.flink.ml.feature.minmaxscaler.MinMaxScalerModelData
-
Converts the table model to a data stream.
- getModelDataStream(Table) - 类 中的静态方法org.apache.flink.ml.feature.onehotencoder.OneHotEncoderModelData
-
Converts the table model to a data stream.
- getModelDataStream(Table) - 类 中的静态方法org.apache.flink.ml.feature.robustscaler.RobustScalerModelData
-
Converts the table model to a data stream.
- getModelDataStream(Table) - 类 中的静态方法org.apache.flink.ml.feature.standardscaler.StandardScalerModelData
-
Converts the table model to a data stream.
- getModelDataStream(Table) - 类 中的静态方法org.apache.flink.ml.feature.stringindexer.StringIndexerModelData
-
Converts the table model to a data stream.
- getModelDataStream(Table) - 类 中的静态方法org.apache.flink.ml.feature.univariatefeatureselector.UnivariateFeatureSelectorModelData
-
Converts the table model to a data stream.
- getModelDataStream(Table) - 类 中的静态方法org.apache.flink.ml.feature.variancethresholdselector.VarianceThresholdSelectorModelData
-
Converts the table model to a data stream.
- getModelDataStream(Table) - 类 中的静态方法org.apache.flink.ml.feature.vectorindexer.VectorIndexerModelData
-
Converts the table model to a data stream.
- getModelDataStream(Table) - 类 中的静态方法org.apache.flink.ml.regression.linearregression.LinearRegressionModelData
-
Converts the table model to a data stream.
- getModelType() - 接口 中的方法org.apache.flink.ml.classification.naivebayes.NaiveBayesModelParams
- getModelVersionCol() - 接口 中的方法org.apache.flink.ml.classification.logisticregression.OnlineLogisticRegressionModelParams
- getN() - 接口 中的方法org.apache.flink.ml.feature.ngram.NGramParams
- getNumBins() - 接口 中的方法org.apache.flink.ml.feature.kbinsdiscretizer.KBinsDiscretizerParams
- getNumClusters() - 接口 中的方法org.apache.flink.ml.clustering.agglomerativeclustering.AgglomerativeClusteringParams
- getNumHashFunctionsPerTable() - 接口 中的方法org.apache.flink.ml.feature.lsh.LSHParams
- getNumHashTables() - 接口 中的方法org.apache.flink.ml.feature.lsh.LSHParams
- getP() - 接口 中的方法org.apache.flink.ml.feature.normalizer.NormalizerParams
- getParamMap() - 类 中的方法org.apache.flink.ml.classification.knn.Knn
- getParamMap() - 类 中的方法org.apache.flink.ml.classification.knn.KnnModel
- getParamMap() - 类 中的方法org.apache.flink.ml.classification.linearsvc.LinearSVC
- getParamMap() - 类 中的方法org.apache.flink.ml.classification.linearsvc.LinearSVCModel
- getParamMap() - 类 中的方法org.apache.flink.ml.classification.logisticregression.LogisticRegression
- getParamMap() - 类 中的方法org.apache.flink.ml.classification.logisticregression.LogisticRegressionModel
- getParamMap() - 类 中的方法org.apache.flink.ml.classification.logisticregression.OnlineLogisticRegression
- getParamMap() - 类 中的方法org.apache.flink.ml.classification.logisticregression.OnlineLogisticRegressionModel
- getParamMap() - 类 中的方法org.apache.flink.ml.classification.naivebayes.NaiveBayes
- getParamMap() - 类 中的方法org.apache.flink.ml.classification.naivebayes.NaiveBayesModel
- getParamMap() - 类 中的方法org.apache.flink.ml.clustering.agglomerativeclustering.AgglomerativeClustering
- getParamMap() - 类 中的方法org.apache.flink.ml.clustering.kmeans.KMeans
- getParamMap() - 类 中的方法org.apache.flink.ml.clustering.kmeans.KMeansModel
- getParamMap() - 类 中的方法org.apache.flink.ml.clustering.kmeans.OnlineKMeans
- getParamMap() - 类 中的方法org.apache.flink.ml.clustering.kmeans.OnlineKMeansModel
- getParamMap() - 类 中的方法org.apache.flink.ml.evaluation.binaryclassification.BinaryClassificationEvaluator
- getParamMap() - 类 中的方法org.apache.flink.ml.feature.binarizer.Binarizer
- getParamMap() - 类 中的方法org.apache.flink.ml.feature.bucketizer.Bucketizer
- getParamMap() - 类 中的方法org.apache.flink.ml.feature.countvectorizer.CountVectorizer
- getParamMap() - 类 中的方法org.apache.flink.ml.feature.countvectorizer.CountVectorizerModel
- getParamMap() - 类 中的方法org.apache.flink.ml.feature.dct.DCT
- getParamMap() - 类 中的方法org.apache.flink.ml.feature.elementwiseproduct.ElementwiseProduct
- getParamMap() - 类 中的方法org.apache.flink.ml.feature.featurehasher.FeatureHasher
- getParamMap() - 类 中的方法org.apache.flink.ml.feature.hashingtf.HashingTF
- getParamMap() - 类 中的方法org.apache.flink.ml.feature.idf.IDF
- getParamMap() - 类 中的方法org.apache.flink.ml.feature.idf.IDFModel
- getParamMap() - 类 中的方法org.apache.flink.ml.feature.imputer.Imputer
- getParamMap() - 类 中的方法org.apache.flink.ml.feature.imputer.ImputerModel
- getParamMap() - 类 中的方法org.apache.flink.ml.feature.interaction.Interaction
- getParamMap() - 类 中的方法org.apache.flink.ml.feature.kbinsdiscretizer.KBinsDiscretizer
- getParamMap() - 类 中的方法org.apache.flink.ml.feature.kbinsdiscretizer.KBinsDiscretizerModel
- getParamMap() - 类 中的方法org.apache.flink.ml.feature.maxabsscaler.MaxAbsScaler
- getParamMap() - 类 中的方法org.apache.flink.ml.feature.maxabsscaler.MaxAbsScalerModel
- getParamMap() - 类 中的方法org.apache.flink.ml.feature.minmaxscaler.MinMaxScaler
- getParamMap() - 类 中的方法org.apache.flink.ml.feature.minmaxscaler.MinMaxScalerModel
- getParamMap() - 类 中的方法org.apache.flink.ml.feature.ngram.NGram
- getParamMap() - 类 中的方法org.apache.flink.ml.feature.normalizer.Normalizer
- getParamMap() - 类 中的方法org.apache.flink.ml.feature.onehotencoder.OneHotEncoder
- getParamMap() - 类 中的方法org.apache.flink.ml.feature.onehotencoder.OneHotEncoderModel
- getParamMap() - 类 中的方法org.apache.flink.ml.feature.polynomialexpansion.PolynomialExpansion
- getParamMap() - 类 中的方法org.apache.flink.ml.feature.randomsplitter.RandomSplitter
- getParamMap() - 类 中的方法org.apache.flink.ml.feature.regextokenizer.RegexTokenizer
- getParamMap() - 类 中的方法org.apache.flink.ml.feature.robustscaler.RobustScaler
- getParamMap() - 类 中的方法org.apache.flink.ml.feature.robustscaler.RobustScalerModel
- getParamMap() - 类 中的方法org.apache.flink.ml.feature.sqltransformer.SQLTransformer
- getParamMap() - 类 中的方法org.apache.flink.ml.feature.standardscaler.OnlineStandardScaler
- getParamMap() - 类 中的方法org.apache.flink.ml.feature.standardscaler.OnlineStandardScalerModel
- getParamMap() - 类 中的方法org.apache.flink.ml.feature.standardscaler.StandardScaler
- getParamMap() - 类 中的方法org.apache.flink.ml.feature.standardscaler.StandardScalerModel
- getParamMap() - 类 中的方法org.apache.flink.ml.feature.stopwordsremover.StopWordsRemover
- getParamMap() - 类 中的方法org.apache.flink.ml.feature.stringindexer.IndexToStringModel
- getParamMap() - 类 中的方法org.apache.flink.ml.feature.stringindexer.StringIndexer
- getParamMap() - 类 中的方法org.apache.flink.ml.feature.stringindexer.StringIndexerModel
- getParamMap() - 类 中的方法org.apache.flink.ml.feature.tokenizer.Tokenizer
- getParamMap() - 类 中的方法org.apache.flink.ml.feature.univariatefeatureselector.UnivariateFeatureSelector
- getParamMap() - 类 中的方法org.apache.flink.ml.feature.univariatefeatureselector.UnivariateFeatureSelectorModel
- getParamMap() - 类 中的方法org.apache.flink.ml.feature.variancethresholdselector.VarianceThresholdSelector
- getParamMap() - 类 中的方法org.apache.flink.ml.feature.variancethresholdselector.VarianceThresholdSelectorModel
- getParamMap() - 类 中的方法org.apache.flink.ml.feature.vectorassembler.VectorAssembler
- getParamMap() - 类 中的方法org.apache.flink.ml.feature.vectorindexer.VectorIndexer
- getParamMap() - 类 中的方法org.apache.flink.ml.feature.vectorindexer.VectorIndexerModel
- getParamMap() - 类 中的方法org.apache.flink.ml.feature.vectorslicer.VectorSlicer
- getParamMap() - 类 中的方法org.apache.flink.ml.recommendation.swing.Swing
- getParamMap() - 类 中的方法org.apache.flink.ml.regression.linearregression.LinearRegression
- getParamMap() - 类 中的方法org.apache.flink.ml.regression.linearregression.LinearRegressionModel
- getParamMap() - 类 中的方法org.apache.flink.ml.stats.anovatest.ANOVATest
- getParamMap() - 类 中的方法org.apache.flink.ml.stats.chisqtest.ChiSqTest
- getParamMap() - 类 中的方法org.apache.flink.ml.stats.fvaluetest.FValueTest
- getPattern() - 接口 中的方法org.apache.flink.ml.feature.regextokenizer.RegexTokenizerParams
- getProducedType() - 类 中的方法org.apache.flink.ml.classification.knn.KnnModelData.ModelDataDecoder
- getProducedType() - 类 中的方法org.apache.flink.ml.classification.linearsvc.LinearSVCModelData.ModelDataDecoder
- getProducedType() - 类 中的方法org.apache.flink.ml.classification.logisticregression.LogisticRegressionModelDataUtil.ModelDataDecoder
- getProducedType() - 类 中的方法org.apache.flink.ml.classification.naivebayes.NaiveBayesModelData.ModelDataDecoder
- getProducedType() - 类 中的方法org.apache.flink.ml.clustering.kmeans.KMeansModelData.ModelDataDecoder
- getProducedType() - 类 中的方法org.apache.flink.ml.feature.countvectorizer.CountVectorizerModelData.ModelDataDecoder
- getProducedType() - 类 中的方法org.apache.flink.ml.feature.idf.IDFModelData.ModelDataDecoder
- getProducedType() - 类 中的方法org.apache.flink.ml.feature.imputer.ImputerModelData.ModelDataDecoder
- getProducedType() - 类 中的方法org.apache.flink.ml.feature.kbinsdiscretizer.KBinsDiscretizerModelData.ModelDataDecoder
- getProducedType() - 类 中的方法org.apache.flink.ml.feature.maxabsscaler.MaxAbsScalerModelData.ModelDataDecoder
- getProducedType() - 类 中的方法org.apache.flink.ml.feature.minmaxscaler.MinMaxScalerModelData.ModelDataDecoder
- getProducedType() - 类 中的方法org.apache.flink.ml.feature.onehotencoder.OneHotEncoderModelData.ModelDataStreamFormat
- getProducedType() - 类 中的方法org.apache.flink.ml.feature.robustscaler.RobustScalerModelData.ModelDataDecoder
- getProducedType() - 类 中的方法org.apache.flink.ml.feature.standardscaler.StandardScalerModelData.ModelDataDecoder
- getProducedType() - 类 中的方法org.apache.flink.ml.feature.stringindexer.StringIndexerModelData.ModelDataDecoder
- getProducedType() - 类 中的方法org.apache.flink.ml.feature.univariatefeatureselector.UnivariateFeatureSelectorModelData.ModelDataDecoder
- getProducedType() - 类 中的方法org.apache.flink.ml.feature.variancethresholdselector.VarianceThresholdSelectorModelData.ModelDataDecoder
- getProducedType() - 类 中的方法org.apache.flink.ml.feature.vectorindexer.VectorIndexerModelData.ModelDataDecoder
- getProducedType() - 类 中的方法org.apache.flink.ml.regression.linearregression.LinearRegressionModelData.ModelDataDecoder
- getRelativeError() - 类 中的方法org.apache.flink.ml.common.util.QuantileSummary
- getSampled() - 类 中的方法org.apache.flink.ml.common.util.QuantileSummary
- getScalingVec() - 接口 中的方法org.apache.flink.ml.feature.elementwiseproduct.ElementwiseProductParams
- getSelectionMode() - 接口 中的方法org.apache.flink.ml.feature.univariatefeatureselector.UnivariateFeatureSelectorParams
- getSelectionThreshold() - 接口 中的方法org.apache.flink.ml.feature.univariatefeatureselector.UnivariateFeatureSelectorParams
- getSmoothing() - 接口 中的方法org.apache.flink.ml.classification.naivebayes.NaiveBayesParams
- getSplitsArray() - 接口 中的方法org.apache.flink.ml.feature.bucketizer.BucketizerParams
- getStatement() - 接口 中的方法org.apache.flink.ml.feature.sqltransformer.SQLTransformerParams
- getStopWords() - 接口 中的方法org.apache.flink.ml.feature.stopwordsremover.StopWordsRemoverParams
- getStrategy() - 接口 中的方法org.apache.flink.ml.feature.imputer.ImputerParams
- getStrategy() - 接口 中的方法org.apache.flink.ml.feature.kbinsdiscretizer.KBinsDiscretizerParams
- getStringOrderType() - 接口 中的方法org.apache.flink.ml.feature.stringindexer.StringIndexerParams
- getSubSamples() - 接口 中的方法org.apache.flink.ml.feature.kbinsdiscretizer.KBinsDiscretizerParams
- getThreshold() - 接口 中的方法org.apache.flink.ml.classification.linearsvc.LinearSVCModelParams
- getThresholds() - 接口 中的方法org.apache.flink.ml.feature.binarizer.BinarizerParams
- getToLowercase() - 接口 中的方法org.apache.flink.ml.feature.regextokenizer.RegexTokenizerParams
- getTotalFields() - 类 中的方法org.apache.flink.ml.common.typeinfo.PriorityQueueTypeInfo
- getTypeClass() - 类 中的方法org.apache.flink.ml.common.typeinfo.PriorityQueueTypeInfo
- getTypeInference(DataTypeFactory) - 类 中的方法org.apache.flink.ml.Functions.ArrayToVectorFunction
- getTypeInference(DataTypeFactory) - 类 中的方法org.apache.flink.ml.Functions.VectorToArrayFunction
- getUpper() - 接口 中的方法org.apache.flink.ml.feature.robustscaler.RobustScalerParams
- getUserCol() - 接口 中的方法org.apache.flink.ml.recommendation.swing.SwingParams
- getVarianceThreshold() - 接口 中的方法org.apache.flink.ml.feature.variancethresholdselector.VarianceThresholdSelectorParams
- getVocabularySize() - 接口 中的方法org.apache.flink.ml.feature.countvectorizer.CountVectorizerParams
- getWeights() - 接口 中的方法org.apache.flink.ml.feature.randomsplitter.RandomSplitterParams
- getWindows() - 接口 中的方法org.apache.flink.ml.common.param.HasWindows
- getWithCentering() - 接口 中的方法org.apache.flink.ml.feature.robustscaler.RobustScalerModelParams
- getWithMean() - 接口 中的方法org.apache.flink.ml.feature.standardscaler.StandardScalerParams
- getWithScaling() - 接口 中的方法org.apache.flink.ml.feature.robustscaler.RobustScalerModelParams
- getWithStd() - 接口 中的方法org.apache.flink.ml.feature.standardscaler.StandardScalerParams
H
- hashCode() - 类 中的方法org.apache.flink.ml.common.typeinfo.PriorityQueueSerializer
- hashCode() - 类 中的方法org.apache.flink.ml.common.typeinfo.PriorityQueueTypeInfo
- hashFunction(Vector) - 类 中的方法org.apache.flink.ml.feature.lsh.MinHashLSHModelData
- HashingTF - org.apache.flink.ml.feature.hashingtf中的类
-
A Transformer that maps a sequence of terms(strings, numbers, booleans) to a sparse vector with a specified dimension using the hashing trick.
- HashingTF() - 类 的构造器org.apache.flink.ml.feature.hashingtf.HashingTF
- HashingTF.HashTFFunction - org.apache.flink.ml.feature.hashingtf中的类
-
The main logic of
HashingTF, which converts the input to a sparse vector. - HashingTFParams<T> - org.apache.flink.ml.feature.hashingtf中的接口
-
Params of
HashingTF. - HashTFFunction(String, boolean, int) - 类 的构造器org.apache.flink.ml.feature.hashingtf.HashingTF.HashTFFunction
- HasWindows<T> - org.apache.flink.ml.common.param中的接口
-
Interface for the shared windows param.
- HingeLoss - org.apache.flink.ml.common.lossfunc中的类
-
The loss function for hinge loss.
I
- idf - 类 中的变量org.apache.flink.ml.feature.idf.IDFModelData
-
Inverse document frequency for all terms.
- IDF - org.apache.flink.ml.feature.idf中的类
-
An Estimator that computes the inverse document frequency (IDF) for the input documents.
- IDF() - 类 的构造器org.apache.flink.ml.feature.idf.IDF
- IDFModel - org.apache.flink.ml.feature.idf中的类
-
A Model which transforms data using the model data computed by
IDF. - IDFModel() - 类 的构造器org.apache.flink.ml.feature.idf.IDFModel
- IDFModelData - org.apache.flink.ml.feature.idf中的类
-
Model data of
IDFModel. - IDFModelData() - 类 的构造器org.apache.flink.ml.feature.idf.IDFModelData
- IDFModelData(DenseVector, long[], long) - 类 的构造器org.apache.flink.ml.feature.idf.IDFModelData
- IDFModelData.ModelDataDecoder - org.apache.flink.ml.feature.idf中的类
-
Decoder for
IDFModelData. - IDFModelData.ModelDataEncoder - org.apache.flink.ml.feature.idf中的类
-
Encoder for
IDFModelData. - IDFModelParams<T> - org.apache.flink.ml.feature.idf中的接口
-
Params for
IDFModel. - IDFParams<T> - org.apache.flink.ml.feature.idf中的接口
-
Params for
IDF. - Imputer - org.apache.flink.ml.feature.imputer中的类
-
The imputer for completing missing values of the input columns.
- Imputer() - 类 的构造器org.apache.flink.ml.feature.imputer.Imputer
- ImputerModel - org.apache.flink.ml.feature.imputer中的类
-
A Model which replaces the missing values using the model data computed by
Imputer. - ImputerModel() - 类 的构造器org.apache.flink.ml.feature.imputer.ImputerModel
- ImputerModelData - org.apache.flink.ml.feature.imputer中的类
-
Model data of
ImputerModel. - ImputerModelData() - 类 的构造器org.apache.flink.ml.feature.imputer.ImputerModelData
- ImputerModelData(Map<String, Double>) - 类 的构造器org.apache.flink.ml.feature.imputer.ImputerModelData
- ImputerModelData.ModelDataDecoder - org.apache.flink.ml.feature.imputer中的类
-
Decoder for
ImputerModelData. - ImputerModelData.ModelDataEncoder - org.apache.flink.ml.feature.imputer中的类
-
Encoder for
ImputerModelData. - ImputerModelParams<T> - org.apache.flink.ml.feature.imputer中的接口
-
Params for
ImputerModel. - ImputerParams<T> - org.apache.flink.ml.feature.imputer中的接口
-
Params of
Imputer. - IndexToStringModel - org.apache.flink.ml.feature.stringindexer中的类
-
A Model which transforms input index column(s) to string column(s) using the model data computed by
StringIndexer. - IndexToStringModel() - 类 的构造器org.apache.flink.ml.feature.stringindexer.IndexToStringModel
- IndexToStringModelParams<T> - org.apache.flink.ml.feature.stringindexer中的接口
-
Params for
IndexToStringModel. - indices - 类 中的变量org.apache.flink.ml.feature.univariatefeatureselector.UnivariateFeatureSelectorModelData
-
Indices of the input features that are selected.
- indices - 类 中的变量org.apache.flink.ml.feature.variancethresholdselector.VarianceThresholdSelectorModelData
- INDICES - 接口 中的静态变量org.apache.flink.ml.feature.vectorslicer.VectorSlicerParams
- indicesValidator() - 接口 中的静态方法org.apache.flink.ml.feature.vectorslicer.VectorSlicerParams
- INIT_MODE - 接口 中的静态变量org.apache.flink.ml.clustering.kmeans.KMeansParams
- initializeState(StateInitializationContext) - 类 中的方法org.apache.flink.ml.feature.minmaxscaler.MinMaxScaler.MinMaxReduceFunctionOperator
- INPUT_SIZES - 接口 中的静态变量org.apache.flink.ml.feature.vectorassembler.VectorAssemblerParams
- insert(double) - 类 中的方法org.apache.flink.ml.common.util.QuantileSummary
-
Insert a new observation into the summary.
- INSTANCE - 类 中的静态变量org.apache.flink.ml.common.lossfunc.BinaryLogisticLoss
- INSTANCE - 类 中的静态变量org.apache.flink.ml.common.lossfunc.HingeLoss
- INSTANCE - 类 中的静态变量org.apache.flink.ml.common.lossfunc.LeastSquareLoss
- Interaction - org.apache.flink.ml.feature.interaction中的类
-
A Transformer that takes vector or numerical columns, and generates a single vector column that contains the product of all combinations of one value from each input column.
- Interaction() - 类 的构造器org.apache.flink.ml.feature.interaction.Interaction
- InteractionParams<T> - org.apache.flink.ml.feature.interaction中的接口
-
Params of
Interaction. - INVERSE - 接口 中的静态变量org.apache.flink.ml.feature.dct.DCTParams
- isBasicType() - 类 中的方法org.apache.flink.ml.common.typeinfo.PriorityQueueTypeInfo
- isCompressed() - 类 中的方法org.apache.flink.ml.common.util.QuantileSummary
- isEmpty() - 类 中的方法org.apache.flink.ml.common.util.QuantileSummary
-
Checks whether the QuantileSummary has inserted rows.
- isImmutableType() - 类 中的方法org.apache.flink.ml.common.typeinfo.PriorityQueueSerializer
- isKeyType() - 类 中的方法org.apache.flink.ml.common.typeinfo.PriorityQueueTypeInfo
- isTupleType() - 类 中的方法org.apache.flink.ml.common.typeinfo.PriorityQueueTypeInfo
- ITEM_COL - 接口 中的静态变量org.apache.flink.ml.recommendation.swing.SwingParams
K
- K - 接口 中的静态变量org.apache.flink.ml.classification.knn.KnnModelParams
- K - 接口 中的静态变量org.apache.flink.ml.clustering.kmeans.KMeansModelParams
- K - 接口 中的静态变量org.apache.flink.ml.recommendation.swing.SwingParams
- KBinsDiscretizer - org.apache.flink.ml.feature.kbinsdiscretizer中的类
-
An Estimator which implements discretization (also known as quantization or binning) to transform continuous features into discrete ones.
- KBinsDiscretizer() - 类 的构造器org.apache.flink.ml.feature.kbinsdiscretizer.KBinsDiscretizer
- KBinsDiscretizerModel - org.apache.flink.ml.feature.kbinsdiscretizer中的类
-
A Model which transforms continuous features into discrete features using the model data computed by
KBinsDiscretizer. - KBinsDiscretizerModel() - 类 的构造器org.apache.flink.ml.feature.kbinsdiscretizer.KBinsDiscretizerModel
- KBinsDiscretizerModelData - org.apache.flink.ml.feature.kbinsdiscretizer中的类
-
Model data of
KBinsDiscretizerModel. - KBinsDiscretizerModelData() - 类 的构造器org.apache.flink.ml.feature.kbinsdiscretizer.KBinsDiscretizerModelData
- KBinsDiscretizerModelData(double[][]) - 类 的构造器org.apache.flink.ml.feature.kbinsdiscretizer.KBinsDiscretizerModelData
- KBinsDiscretizerModelData.ModelDataDecoder - org.apache.flink.ml.feature.kbinsdiscretizer中的类
-
Decoder for
KBinsDiscretizerModelData. - KBinsDiscretizerModelData.ModelDataEncoder - org.apache.flink.ml.feature.kbinsdiscretizer中的类
-
Encoder for
KBinsDiscretizerModelData. - KBinsDiscretizerModelParams<T> - org.apache.flink.ml.feature.kbinsdiscretizer中的接口
-
Params for
KBinsDiscretizerModel. - KBinsDiscretizerParams<T> - org.apache.flink.ml.feature.kbinsdiscretizer中的接口
-
Params for
KBinsDiscretizer. - keyDistance(Vector, Vector) - 类 中的方法org.apache.flink.ml.feature.lsh.MinHashLSHModelData
- KMeans - org.apache.flink.ml.clustering.kmeans中的类
-
An Estimator which implements the k-means clustering algorithm.
- KMeans() - 类 的构造器org.apache.flink.ml.clustering.kmeans.KMeans
- KMEANS - 接口 中的静态变量org.apache.flink.ml.feature.kbinsdiscretizer.KBinsDiscretizerParams
- KMeansModel - org.apache.flink.ml.clustering.kmeans中的类
-
A Model which clusters data into k clusters using the model data computed by
KMeans. - KMeansModel() - 类 的构造器org.apache.flink.ml.clustering.kmeans.KMeansModel
- KMeansModelData - org.apache.flink.ml.clustering.kmeans中的类
-
Model data of
KMeansModelandOnlineKMeansModel. - KMeansModelData() - 类 的构造器org.apache.flink.ml.clustering.kmeans.KMeansModelData
- KMeansModelData(DenseVector[], DenseVector) - 类 的构造器org.apache.flink.ml.clustering.kmeans.KMeansModelData
- KMeansModelData.ModelDataDecoder - org.apache.flink.ml.clustering.kmeans中的类
-
Data decoder for
KMeansModelData. - KMeansModelData.ModelDataEncoder - org.apache.flink.ml.clustering.kmeans中的类
-
Data encoder for
KMeansModelData. - KMeansModelParams<T> - org.apache.flink.ml.clustering.kmeans中的接口
-
Params of
KMeansModelandOnlineKMeansModel. - KMeansParams<T> - org.apache.flink.ml.clustering.kmeans中的接口
-
Params of
KMeans. - Knn - org.apache.flink.ml.classification.knn中的类
-
An Estimator which implements the KNN algorithm.
- Knn() - 类 的构造器org.apache.flink.ml.classification.knn.Knn
- KnnModel - org.apache.flink.ml.classification.knn中的类
-
A Model which classifies data using the model data computed by
Knn. - KnnModel() - 类 的构造器org.apache.flink.ml.classification.knn.KnnModel
- KnnModelData - org.apache.flink.ml.classification.knn中的类
-
Model data of
KnnModel. - KnnModelData() - 类 的构造器org.apache.flink.ml.classification.knn.KnnModelData
- KnnModelData(DenseMatrix, DenseVector, DenseVector) - 类 的构造器org.apache.flink.ml.classification.knn.KnnModelData
- KnnModelData.ModelDataDecoder - org.apache.flink.ml.classification.knn中的类
-
Decoder for
KnnModelData. - KnnModelData.ModelDataEncoder - org.apache.flink.ml.classification.knn中的类
-
Encoder for
KnnModelData. - KnnModelParams<T> - org.apache.flink.ml.classification.knn中的接口
-
Params for
KnnModel. - KnnParams<T> - org.apache.flink.ml.classification.knn中的接口
-
Params for
Knn. - ks - 类 中的变量org.apache.flink.ml.evaluation.binaryclassification.BinaryClassificationEvaluator.BinaryMetrics
- KS - 接口 中的静态变量org.apache.flink.ml.evaluation.binaryclassification.BinaryClassificationEvaluatorParams
L
- LABEL_TYPE - 接口 中的静态变量org.apache.flink.ml.feature.univariatefeatureselector.UnivariateFeatureSelectorParams
-
Supported options of the label type.
- labels - 类 中的变量org.apache.flink.ml.classification.knn.KnnModelData
- labels - 类 中的变量org.apache.flink.ml.classification.naivebayes.NaiveBayesModelData
-
Value of labels.
- LeastSquareLoss - org.apache.flink.ml.common.lossfunc中的类
-
The loss function for least square loss.
- LinearRegression - org.apache.flink.ml.regression.linearregression中的类
-
An Estimator which implements the linear regression algorithm.
- LinearRegression() - 类 的构造器org.apache.flink.ml.regression.linearregression.LinearRegression
- LinearRegressionModel - org.apache.flink.ml.regression.linearregression中的类
-
A Model which predicts data using the model data computed by
LinearRegression. - LinearRegressionModel() - 类 的构造器org.apache.flink.ml.regression.linearregression.LinearRegressionModel
- LinearRegressionModelData - org.apache.flink.ml.regression.linearregression中的类
-
Model data of
LinearRegressionModel. - LinearRegressionModelData() - 类 的构造器org.apache.flink.ml.regression.linearregression.LinearRegressionModelData
- LinearRegressionModelData(DenseVector) - 类 的构造器org.apache.flink.ml.regression.linearregression.LinearRegressionModelData
- LinearRegressionModelData.ModelDataDecoder - org.apache.flink.ml.regression.linearregression中的类
-
Data decoder for
LinearRegressionModel. - LinearRegressionModelData.ModelDataEncoder - org.apache.flink.ml.regression.linearregression中的类
-
Data encoder for
LinearRegressionModel. - LinearRegressionModelParams<T> - org.apache.flink.ml.regression.linearregression中的接口
-
Params for
LinearRegressionModel. - LinearRegressionParams<T> - org.apache.flink.ml.regression.linearregression中的接口
-
Params for
LinearRegression. - LinearSVC - org.apache.flink.ml.classification.linearsvc中的类
-
An Estimator which implements the linear support vector classification.
- LinearSVC() - 类 的构造器org.apache.flink.ml.classification.linearsvc.LinearSVC
- LinearSVCModel - org.apache.flink.ml.classification.linearsvc中的类
-
A Model which classifies data using the model data computed by
LinearSVC. - LinearSVCModel() - 类 的构造器org.apache.flink.ml.classification.linearsvc.LinearSVCModel
- LinearSVCModelData - org.apache.flink.ml.classification.linearsvc中的类
-
Model data of
LinearSVCModel. - LinearSVCModelData() - 类 的构造器org.apache.flink.ml.classification.linearsvc.LinearSVCModelData
- LinearSVCModelData(DenseVector) - 类 的构造器org.apache.flink.ml.classification.linearsvc.LinearSVCModelData
- LinearSVCModelData.ModelDataDecoder - org.apache.flink.ml.classification.linearsvc中的类
-
Data decoder for
LinearSVCModel. - LinearSVCModelData.ModelDataEncoder - org.apache.flink.ml.classification.linearsvc中的类
-
Data encoder for
LinearSVCModel. - LinearSVCModelParams<T> - org.apache.flink.ml.classification.linearsvc中的接口
-
Params for
LinearSVCModel. - LinearSVCParams<T> - org.apache.flink.ml.classification.linearsvc中的接口
-
Params for
LinearSVC. - LINKAGE - 接口 中的静态变量org.apache.flink.ml.clustering.agglomerativeclustering.AgglomerativeClusteringParams
-
Supported options to compute the distance between two clusters.
- LINKAGE_AVERAGE - 接口 中的静态变量org.apache.flink.ml.clustering.agglomerativeclustering.AgglomerativeClusteringParams
- LINKAGE_COMPLETE - 接口 中的静态变量org.apache.flink.ml.clustering.agglomerativeclustering.AgglomerativeClusteringParams
- LINKAGE_SINGLE - 接口 中的静态变量org.apache.flink.ml.clustering.agglomerativeclustering.AgglomerativeClusteringParams
- LINKAGE_WARD - 接口 中的静态变量org.apache.flink.ml.clustering.agglomerativeclustering.AgglomerativeClusteringParams
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.classification.knn.Knn
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.classification.knn.KnnModel
-
Loads model data from path.
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.classification.linearsvc.LinearSVC
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.classification.linearsvc.LinearSVCModel
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.classification.logisticregression.LogisticRegression
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.classification.logisticregression.LogisticRegressionModel
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.classification.logisticregression.OnlineLogisticRegression
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.classification.logisticregression.OnlineLogisticRegressionModel
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.classification.naivebayes.NaiveBayes
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.classification.naivebayes.NaiveBayesModel
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.clustering.agglomerativeclustering.AgglomerativeClustering
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.clustering.kmeans.KMeans
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.clustering.kmeans.KMeansModel
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.clustering.kmeans.OnlineKMeans
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.clustering.kmeans.OnlineKMeansModel
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.evaluation.binaryclassification.BinaryClassificationEvaluator
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.feature.binarizer.Binarizer
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.feature.bucketizer.Bucketizer
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.feature.countvectorizer.CountVectorizer
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.feature.countvectorizer.CountVectorizerModel
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.feature.dct.DCT
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.feature.elementwiseproduct.ElementwiseProduct
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.feature.featurehasher.FeatureHasher
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.feature.hashingtf.HashingTF
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.feature.idf.IDF
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.feature.idf.IDFModel
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.feature.imputer.Imputer
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.feature.imputer.ImputerModel
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.feature.interaction.Interaction
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.feature.kbinsdiscretizer.KBinsDiscretizer
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.feature.kbinsdiscretizer.KBinsDiscretizerModel
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.feature.lsh.MinHashLSH
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.feature.lsh.MinHashLSHModel
-
Loads model data from path.
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.feature.maxabsscaler.MaxAbsScaler
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.feature.maxabsscaler.MaxAbsScalerModel
-
Loads model data from path.
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.feature.minmaxscaler.MinMaxScaler
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.feature.minmaxscaler.MinMaxScalerModel
-
Loads model data from path.
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.feature.ngram.NGram
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.feature.normalizer.Normalizer
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.feature.onehotencoder.OneHotEncoder
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.feature.onehotencoder.OneHotEncoderModel
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.feature.polynomialexpansion.PolynomialExpansion
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.feature.randomsplitter.RandomSplitter
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.feature.regextokenizer.RegexTokenizer
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.feature.robustscaler.RobustScaler
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.feature.robustscaler.RobustScalerModel
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.feature.sqltransformer.SQLTransformer
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.feature.standardscaler.OnlineStandardScaler
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.feature.standardscaler.OnlineStandardScalerModel
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.feature.standardscaler.StandardScaler
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.feature.standardscaler.StandardScalerModel
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.feature.stopwordsremover.StopWordsRemover
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.feature.stringindexer.IndexToStringModel
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.feature.stringindexer.StringIndexer
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.feature.stringindexer.StringIndexerModel
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.feature.tokenizer.Tokenizer
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.feature.univariatefeatureselector.UnivariateFeatureSelector
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.feature.univariatefeatureselector.UnivariateFeatureSelectorModel
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.feature.variancethresholdselector.VarianceThresholdSelector
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.feature.variancethresholdselector.VarianceThresholdSelectorModel
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.feature.vectorassembler.VectorAssembler
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.feature.vectorindexer.VectorIndexer
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.feature.vectorindexer.VectorIndexerModel
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.feature.vectorslicer.VectorSlicer
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.recommendation.swing.Swing
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.regression.linearregression.LinearRegression
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.regression.linearregression.LinearRegressionModel
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.stats.anovatest.ANOVATest
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.stats.chisqtest.ChiSqTest
- load(StreamTableEnvironment, String) - 类 中的静态方法org.apache.flink.ml.stats.fvaluetest.FValueTest
- loadDefaultStopWords(String) - 类 中的静态方法org.apache.flink.ml.feature.stopwordsremover.StopWordsRemover
-
Loads the default stop words for the given language.
- loadServable(String) - 类 中的静态方法org.apache.flink.ml.classification.logisticregression.LogisticRegressionModel
- LOCALE - 接口 中的静态变量org.apache.flink.ml.feature.stopwordsremover.StopWordsRemoverParams
- LogisticRegression - org.apache.flink.ml.classification.logisticregression中的类
-
An Estimator which implements the logistic regression algorithm.
- LogisticRegression() - 类 的构造器org.apache.flink.ml.classification.logisticregression.LogisticRegression
- LogisticRegressionModel - org.apache.flink.ml.classification.logisticregression中的类
-
A Model which classifies data using the model data computed by
LogisticRegression. - LogisticRegressionModel() - 类 的构造器org.apache.flink.ml.classification.logisticregression.LogisticRegressionModel
- LogisticRegressionModelDataUtil - org.apache.flink.ml.classification.logisticregression中的类
-
The utility class which provides methods to convert model data from Table to Datastream, and classes to save/load model data.
- LogisticRegressionModelDataUtil() - 类 的构造器org.apache.flink.ml.classification.logisticregression.LogisticRegressionModelDataUtil
- LogisticRegressionModelDataUtil.ModelDataDecoder - org.apache.flink.ml.classification.logisticregression中的类
-
Data decoder for
LogisticRegressionandOnlineLogisticRegression. - LogisticRegressionModelDataUtil.ModelDataEncoder - org.apache.flink.ml.classification.logisticregression中的类
-
Data encoder for
LogisticRegressionandOnlineLogisticRegression. - LogisticRegressionParams<T> - org.apache.flink.ml.classification.logisticregression中的接口
-
Params for
LogisticRegression. - LossFunc - org.apache.flink.ml.common.lossfunc中的接口
-
A loss function is to compute the loss and gradient with the given coefficient and training data.
- LOWER - 接口 中的静态变量org.apache.flink.ml.feature.robustscaler.RobustScalerParams
- LSHModelParams<T> - org.apache.flink.ml.feature.lsh中的接口
-
Params for
LSHModel. - LSHParams<T> - org.apache.flink.ml.feature.lsh中的接口
-
Params for
LSH.
M
- map(Row) - 类 中的方法org.apache.flink.ml.feature.hashingtf.HashingTF.HashTFFunction
- MAX - 接口 中的静态变量org.apache.flink.ml.feature.minmaxscaler.MinMaxScalerParams
- MAX_CATEGORIES - 接口 中的静态变量org.apache.flink.ml.feature.vectorindexer.VectorIndexerParams
- MAX_DF - 接口 中的静态变量org.apache.flink.ml.feature.countvectorizer.CountVectorizerParams
- MAX_INDEX_NUM - 接口 中的静态变量org.apache.flink.ml.feature.stringindexer.StringIndexerParams
- MAX_USER_BEHAVIOR - 接口 中的静态变量org.apache.flink.ml.recommendation.swing.SwingParams
- MAX_USER_NUM_PER_ITEM - 接口 中的静态变量org.apache.flink.ml.recommendation.swing.SwingParams
- MaxAbsScaler - org.apache.flink.ml.feature.maxabsscaler中的类
-
An Estimator which implements the MaxAbsScaler algorithm.
- MaxAbsScaler() - 类 的构造器org.apache.flink.ml.feature.maxabsscaler.MaxAbsScaler
- MaxAbsScalerModel - org.apache.flink.ml.feature.maxabsscaler中的类
-
A Model which transforms data using the model data computed by
MaxAbsScaler. - MaxAbsScalerModel() - 类 的构造器org.apache.flink.ml.feature.maxabsscaler.MaxAbsScalerModel
- MaxAbsScalerModelData - org.apache.flink.ml.feature.maxabsscaler中的类
-
Model data of
MaxAbsScalerModel. - MaxAbsScalerModelData() - 类 的构造器org.apache.flink.ml.feature.maxabsscaler.MaxAbsScalerModelData
- MaxAbsScalerModelData(DenseVector) - 类 的构造器org.apache.flink.ml.feature.maxabsscaler.MaxAbsScalerModelData
- MaxAbsScalerModelData.ModelDataDecoder - org.apache.flink.ml.feature.maxabsscaler中的类
-
Decoder for
MaxAbsScalerModelData. - MaxAbsScalerModelData.ModelDataEncoder - org.apache.flink.ml.feature.maxabsscaler中的类
-
Encoder for
MaxAbsScalerModelData. - MaxAbsScalerParams<T> - org.apache.flink.ml.feature.maxabsscaler中的接口
-
Params for
MaxAbsScaler. - maxScore - 类 中的变量org.apache.flink.ml.evaluation.binaryclassification.BinaryClassificationEvaluator.BinarySummary
- maxVector - 类 中的变量org.apache.flink.ml.feature.maxabsscaler.MaxAbsScalerModelData
- maxVector - 类 中的变量org.apache.flink.ml.feature.minmaxscaler.MinMaxScalerModelData
- mean - 类 中的变量org.apache.flink.ml.feature.standardscaler.StandardScalerModelData
-
Mean of each dimension.
- MEAN - 接口 中的静态变量org.apache.flink.ml.feature.imputer.ImputerParams
- MEDIAN - 接口 中的静态变量org.apache.flink.ml.feature.imputer.ImputerParams
- medians - 类 中的变量org.apache.flink.ml.feature.robustscaler.RobustScalerModelData
- merge(QuantileSummary) - 类 中的方法org.apache.flink.ml.common.util.QuantileSummary
-
Merges two summaries together.
- merge(BinaryClassificationEvaluator.BinaryMetrics) - 类 中的方法org.apache.flink.ml.evaluation.binaryclassification.BinaryClassificationEvaluator.BinaryMetrics
- METRICS_NAMES - 接口 中的静态变量org.apache.flink.ml.evaluation.binaryclassification.BinaryClassificationEvaluatorParams
-
Param for supported metric names in binary classification evaluation (supports 'areaUnderROC', 'areaUnderPR', 'ks' and 'areaUnderLorenz').
- MIN - 接口 中的静态变量org.apache.flink.ml.feature.minmaxscaler.MinMaxScalerParams
- MIN_DF - 接口 中的静态变量org.apache.flink.ml.feature.countvectorizer.CountVectorizerParams
- MIN_DOC_FREQ - 接口 中的静态变量org.apache.flink.ml.feature.idf.IDFParams
- MIN_TF - 接口 中的静态变量org.apache.flink.ml.feature.countvectorizer.CountVectorizerModelParams
- MIN_TOKEN_LENGTH - 接口 中的静态变量org.apache.flink.ml.feature.regextokenizer.RegexTokenizerParams
- MIN_USER_BEHAVIOR - 接口 中的静态变量org.apache.flink.ml.recommendation.swing.SwingParams
- MinHashLSH - org.apache.flink.ml.feature.lsh中的类
-
An Estimator that implements the MinHash LSH algorithm, which supports LSH for Jaccard distance.
- MinHashLSH() - 类 的构造器org.apache.flink.ml.feature.lsh.MinHashLSH
- MinHashLSHModel - org.apache.flink.ml.feature.lsh中的类
-
A Model which generates hash values using the model data computed by
MinHashLSH. - MinHashLSHModel() - 类 的构造器org.apache.flink.ml.feature.lsh.MinHashLSHModel
- MinHashLSHModelData - org.apache.flink.ml.feature.lsh中的类
-
Model data of
MinHashLSHModel. - MinHashLSHModelData() - 类 的构造器org.apache.flink.ml.feature.lsh.MinHashLSHModelData
- MinHashLSHModelData(int, int, int[], int[]) - 类 的构造器org.apache.flink.ml.feature.lsh.MinHashLSHModelData
- MinHashLSHModelData.ModelDataEncoder - org.apache.flink.ml.feature.lsh中的类
-
Encoder for
MinHashLSHModelData. - MinHashLSHParams<T> - org.apache.flink.ml.feature.lsh中的接口
-
Params for
MinHashLSH. - MinMaxReduceFunctionOperator() - 类 的构造器org.apache.flink.ml.feature.minmaxscaler.MinMaxScaler.MinMaxReduceFunctionOperator
- MinMaxScaler - org.apache.flink.ml.feature.minmaxscaler中的类
-
An Estimator which implements the MinMaxScaler algorithm.
- MinMaxScaler() - 类 的构造器org.apache.flink.ml.feature.minmaxscaler.MinMaxScaler
- MinMaxScaler.MinMaxReduceFunctionOperator - org.apache.flink.ml.feature.minmaxscaler中的类
-
A stream operator to compute the min and max values in each partition of the input bounded data stream.
- MinMaxScalerModel - org.apache.flink.ml.feature.minmaxscaler中的类
-
A Model which transforms data using the model data computed by
MinMaxScaler. - MinMaxScalerModel() - 类 的构造器org.apache.flink.ml.feature.minmaxscaler.MinMaxScalerModel
- MinMaxScalerModelData - org.apache.flink.ml.feature.minmaxscaler中的类
-
Model data of
MinMaxScalerModel. - MinMaxScalerModelData() - 类 的构造器org.apache.flink.ml.feature.minmaxscaler.MinMaxScalerModelData
- MinMaxScalerModelData(DenseVector, DenseVector) - 类 的构造器org.apache.flink.ml.feature.minmaxscaler.MinMaxScalerModelData
- MinMaxScalerModelData.ModelDataDecoder - org.apache.flink.ml.feature.minmaxscaler中的类
-
Decoder for
MinMaxScalerModelData. - MinMaxScalerModelData.ModelDataEncoder - org.apache.flink.ml.feature.minmaxscaler中的类
-
Encoder for
MinMaxScalerModelData. - MinMaxScalerParams<T> - org.apache.flink.ml.feature.minmaxscaler中的接口
-
Params for
MinMaxScaler. - minVector - 类 中的变量org.apache.flink.ml.feature.minmaxscaler.MinMaxScalerModelData
- MISSING_VALUE - 接口 中的静态变量org.apache.flink.ml.feature.imputer.ImputerModelParams
- MODEL_DATA_VERSION_GAUGE_KEY - 类 中的静态变量org.apache.flink.ml.classification.logisticregression.OnlineLogisticRegressionModel
- MODEL_DATA_VERSION_GAUGE_KEY - 类 中的静态变量org.apache.flink.ml.clustering.kmeans.OnlineKMeansModel
- MODEL_TYPE - 接口 中的静态变量org.apache.flink.ml.classification.naivebayes.NaiveBayesModelParams
- MODEL_VERSION_COL - 接口 中的静态变量org.apache.flink.ml.classification.logisticregression.OnlineLogisticRegressionModelParams
- ModelDataDecoder() - 类 的构造器org.apache.flink.ml.classification.knn.KnnModelData.ModelDataDecoder
- ModelDataDecoder() - 类 的构造器org.apache.flink.ml.classification.linearsvc.LinearSVCModelData.ModelDataDecoder
- ModelDataDecoder() - 类 的构造器org.apache.flink.ml.classification.logisticregression.LogisticRegressionModelDataUtil.ModelDataDecoder
- ModelDataDecoder() - 类 的构造器org.apache.flink.ml.classification.naivebayes.NaiveBayesModelData.ModelDataDecoder
- ModelDataDecoder() - 类 的构造器org.apache.flink.ml.clustering.kmeans.KMeansModelData.ModelDataDecoder
- ModelDataDecoder() - 类 的构造器org.apache.flink.ml.feature.countvectorizer.CountVectorizerModelData.ModelDataDecoder
- ModelDataDecoder() - 类 的构造器org.apache.flink.ml.feature.idf.IDFModelData.ModelDataDecoder
- ModelDataDecoder() - 类 的构造器org.apache.flink.ml.feature.imputer.ImputerModelData.ModelDataDecoder
- ModelDataDecoder() - 类 的构造器org.apache.flink.ml.feature.kbinsdiscretizer.KBinsDiscretizerModelData.ModelDataDecoder
- ModelDataDecoder() - 类 的构造器org.apache.flink.ml.feature.maxabsscaler.MaxAbsScalerModelData.ModelDataDecoder
- ModelDataDecoder() - 类 的构造器org.apache.flink.ml.feature.minmaxscaler.MinMaxScalerModelData.ModelDataDecoder
- ModelDataDecoder() - 类 的构造器org.apache.flink.ml.feature.robustscaler.RobustScalerModelData.ModelDataDecoder
- ModelDataDecoder() - 类 的构造器org.apache.flink.ml.feature.standardscaler.StandardScalerModelData.ModelDataDecoder
- ModelDataDecoder() - 类 的构造器org.apache.flink.ml.feature.stringindexer.StringIndexerModelData.ModelDataDecoder
- ModelDataDecoder() - 类 的构造器org.apache.flink.ml.feature.univariatefeatureselector.UnivariateFeatureSelectorModelData.ModelDataDecoder
- ModelDataDecoder() - 类 的构造器org.apache.flink.ml.feature.variancethresholdselector.VarianceThresholdSelectorModelData.ModelDataDecoder
- ModelDataDecoder() - 类 的构造器org.apache.flink.ml.feature.vectorindexer.VectorIndexerModelData.ModelDataDecoder
- ModelDataDecoder() - 类 的构造器org.apache.flink.ml.regression.linearregression.LinearRegressionModelData.ModelDataDecoder
- ModelDataEncoder() - 类 的构造器org.apache.flink.ml.classification.knn.KnnModelData.ModelDataEncoder
- ModelDataEncoder() - 类 的构造器org.apache.flink.ml.classification.linearsvc.LinearSVCModelData.ModelDataEncoder
- ModelDataEncoder() - 类 的构造器org.apache.flink.ml.classification.logisticregression.LogisticRegressionModelDataUtil.ModelDataEncoder
- ModelDataEncoder() - 类 的构造器org.apache.flink.ml.classification.naivebayes.NaiveBayesModelData.ModelDataEncoder
- ModelDataEncoder() - 类 的构造器org.apache.flink.ml.clustering.kmeans.KMeansModelData.ModelDataEncoder
- ModelDataEncoder() - 类 的构造器org.apache.flink.ml.feature.countvectorizer.CountVectorizerModelData.ModelDataEncoder
- ModelDataEncoder() - 类 的构造器org.apache.flink.ml.feature.idf.IDFModelData.ModelDataEncoder
- ModelDataEncoder() - 类 的构造器org.apache.flink.ml.feature.imputer.ImputerModelData.ModelDataEncoder
- ModelDataEncoder() - 类 的构造器org.apache.flink.ml.feature.kbinsdiscretizer.KBinsDiscretizerModelData.ModelDataEncoder
- ModelDataEncoder() - 类 的构造器org.apache.flink.ml.feature.lsh.MinHashLSHModelData.ModelDataEncoder
- ModelDataEncoder() - 类 的构造器org.apache.flink.ml.feature.maxabsscaler.MaxAbsScalerModelData.ModelDataEncoder
- ModelDataEncoder() - 类 的构造器org.apache.flink.ml.feature.minmaxscaler.MinMaxScalerModelData.ModelDataEncoder
- ModelDataEncoder() - 类 的构造器org.apache.flink.ml.feature.onehotencoder.OneHotEncoderModelData.ModelDataEncoder
- ModelDataEncoder() - 类 的构造器org.apache.flink.ml.feature.robustscaler.RobustScalerModelData.ModelDataEncoder
- ModelDataEncoder() - 类 的构造器org.apache.flink.ml.feature.standardscaler.StandardScalerModelData.ModelDataEncoder
- ModelDataEncoder() - 类 的构造器org.apache.flink.ml.feature.stringindexer.StringIndexerModelData.ModelDataEncoder
- ModelDataEncoder() - 类 的构造器org.apache.flink.ml.feature.univariatefeatureselector.UnivariateFeatureSelectorModelData.ModelDataEncoder
- ModelDataEncoder() - 类 的构造器org.apache.flink.ml.feature.variancethresholdselector.VarianceThresholdSelectorModelData.ModelDataEncoder
- ModelDataEncoder() - 类 的构造器org.apache.flink.ml.feature.vectorindexer.VectorIndexerModelData.ModelDataEncoder
- ModelDataEncoder() - 类 的构造器org.apache.flink.ml.regression.linearregression.LinearRegressionModelData.ModelDataEncoder
- ModelDataStreamFormat() - 类 的构造器org.apache.flink.ml.feature.onehotencoder.OneHotEncoderModelData.ModelDataStreamFormat
- MOST_FREQUENT - 接口 中的静态变量org.apache.flink.ml.feature.imputer.ImputerParams
N
- N - 接口 中的静态变量org.apache.flink.ml.feature.ngram.NGramParams
- NaiveBayes - org.apache.flink.ml.classification.naivebayes中的类
-
An Estimator which implements the naive bayes classification algorithm.
- NaiveBayes() - 类 的构造器org.apache.flink.ml.classification.naivebayes.NaiveBayes
- NaiveBayesModel - org.apache.flink.ml.classification.naivebayes中的类
-
A Model which classifies data using the model data computed by
NaiveBayes. - NaiveBayesModel() - 类 的构造器org.apache.flink.ml.classification.naivebayes.NaiveBayesModel
- NaiveBayesModelData - org.apache.flink.ml.classification.naivebayes中的类
-
Model data of
NaiveBayesModel. - NaiveBayesModelData() - 类 的构造器org.apache.flink.ml.classification.naivebayes.NaiveBayesModelData
- NaiveBayesModelData(Map<Double, Double>[][], DenseVector, DenseVector) - 类 的构造器org.apache.flink.ml.classification.naivebayes.NaiveBayesModelData
- NaiveBayesModelData.ModelDataDecoder - org.apache.flink.ml.classification.naivebayes中的类
-
Data decoder for the
NaiveBayesModelData. - NaiveBayesModelData.ModelDataEncoder - org.apache.flink.ml.classification.naivebayes中的类
-
Data encoder for the
NaiveBayesModelData. - NaiveBayesModelParams<T> - org.apache.flink.ml.classification.naivebayes中的接口
-
Params of
NaiveBayesModel. - NaiveBayesParams<T> - org.apache.flink.ml.classification.naivebayes中的接口
-
Params of
NaiveBayes. - NGram - org.apache.flink.ml.feature.ngram中的类
-
A Transformer that converts the input string array into an array of n-grams, where each n-gram is represented by a space-separated string of words.
- NGram() - 类 的构造器org.apache.flink.ml.feature.ngram.NGram
- NGram.NGramUdf - org.apache.flink.ml.feature.ngram中的类
-
The main logic of
NGram, which converts the input string array to an array of n-grams. - NGramParams<T> - org.apache.flink.ml.feature.ngram中的接口
-
Params of
NGram. - NGramUdf() - 类 的构造器org.apache.flink.ml.feature.ngram.NGram.NGramUdf
- Normalizer - org.apache.flink.ml.feature.normalizer中的类
-
A Transformer that normalizes a vector to have unit norm using the given p-norm.
- Normalizer() - 类 的构造器org.apache.flink.ml.feature.normalizer.Normalizer
- NormalizerParams<T> - org.apache.flink.ml.feature.normalizer中的接口
-
Params of
Normalizer. - NUM_BINS - 接口 中的静态变量org.apache.flink.ml.feature.kbinsdiscretizer.KBinsDiscretizerParams
- NUM_CLUSTERS - 接口 中的静态变量org.apache.flink.ml.clustering.agglomerativeclustering.AgglomerativeClusteringParams
- NUM_HASH_FUNCTIONS_PER_TABLE - 接口 中的静态变量org.apache.flink.ml.feature.lsh.LSHParams
-
Param for the number of hash functions per hash table used in LSH AND-amplification.
- NUM_HASH_TABLES - 接口 中的静态变量org.apache.flink.ml.feature.lsh.LSHParams
-
Param for the number of hash tables used in LSH OR-amplification.
- NUM_TOP_FEATURES - 接口 中的静态变量org.apache.flink.ml.feature.univariatefeatureselector.UnivariateFeatureSelectorParams
- numDocs - 类 中的变量org.apache.flink.ml.feature.idf.IDFModelData
-
Number of docs in the training set.
- numHashFunctionsPerTable - 类 中的变量org.apache.flink.ml.feature.lsh.MinHashLSHModelData
- numHashTables - 类 中的变量org.apache.flink.ml.feature.lsh.MinHashLSHModelData
- numOfFeatures - 类 中的变量org.apache.flink.ml.feature.variancethresholdselector.VarianceThresholdSelectorModelData
O
- OneHotEncoder - org.apache.flink.ml.feature.onehotencoder中的类
-
An Estimator which implements the one-hot encoding algorithm.
- OneHotEncoder() - 类 的构造器org.apache.flink.ml.feature.onehotencoder.OneHotEncoder
- OneHotEncoderModel - org.apache.flink.ml.feature.onehotencoder中的类
-
A Model which encodes data into one-hot format using the model data computed by
OneHotEncoder. - OneHotEncoderModel() - 类 的构造器org.apache.flink.ml.feature.onehotencoder.OneHotEncoderModel
- OneHotEncoderModelData - org.apache.flink.ml.feature.onehotencoder中的类
-
Model data of
OneHotEncoderModel. - OneHotEncoderModelData() - 类 的构造器org.apache.flink.ml.feature.onehotencoder.OneHotEncoderModelData
- OneHotEncoderModelData.ModelDataEncoder - org.apache.flink.ml.feature.onehotencoder中的类
-
Data encoder for the OneHotEncoder model data.
- OneHotEncoderModelData.ModelDataStreamFormat - org.apache.flink.ml.feature.onehotencoder中的类
-
Data decoder for the OneHotEncoder model data.
- OneHotEncoderParams<T> - org.apache.flink.ml.feature.onehotencoder中的接口
-
Params of OneHotEncoderModel.
- OnlineKMeans - org.apache.flink.ml.clustering.kmeans中的类
-
OnlineKMeans extends the function of
KMeans, supporting to train a K-Means model continuously according to an unbounded stream of train data. - OnlineKMeans() - 类 的构造器org.apache.flink.ml.clustering.kmeans.OnlineKMeans
- OnlineKMeansModel - org.apache.flink.ml.clustering.kmeans中的类
-
OnlineKMeansModel can be regarded as an advanced
KMeansModeloperator which can update model data in a streaming format, using the model data provided byOnlineKMeans. - OnlineKMeansModel() - 类 的构造器org.apache.flink.ml.clustering.kmeans.OnlineKMeansModel
- OnlineKMeansParams<T> - org.apache.flink.ml.clustering.kmeans中的接口
-
Params of
OnlineKMeans. - OnlineLogisticRegression - org.apache.flink.ml.classification.logisticregression中的类
-
An Estimator which implements the online logistic regression algorithm.
- OnlineLogisticRegression() - 类 的构造器org.apache.flink.ml.classification.logisticregression.OnlineLogisticRegression
- OnlineLogisticRegressionModel - org.apache.flink.ml.classification.logisticregression中的类
-
A Model which classifies data using the model data computed by
OnlineLogisticRegression. - OnlineLogisticRegressionModel() - 类 的构造器org.apache.flink.ml.classification.logisticregression.OnlineLogisticRegressionModel
- OnlineLogisticRegressionModelParams<T> - org.apache.flink.ml.classification.logisticregression中的接口
-
Params for
OnlineLogisticRegressionModel. - OnlineLogisticRegressionParams<T> - org.apache.flink.ml.classification.logisticregression中的接口
-
Params of
OnlineLogisticRegression. - OnlineStandardScaler - org.apache.flink.ml.feature.standardscaler中的类
-
An Estimator which implements the online standard scaling algorithm, which is the online version of
StandardScaler. - OnlineStandardScaler() - 类 的构造器org.apache.flink.ml.feature.standardscaler.OnlineStandardScaler
- OnlineStandardScalerModel - org.apache.flink.ml.feature.standardscaler中的类
-
A Model which transforms data using the model data computed by
OnlineStandardScaler. - OnlineStandardScalerModel() - 类 的构造器org.apache.flink.ml.feature.standardscaler.OnlineStandardScalerModel
- OnlineStandardScalerModelParams<T> - org.apache.flink.ml.feature.standardscaler中的接口
-
Params for
OnlineStandardScalerModel. - OnlineStandardScalerParams<T> - org.apache.flink.ml.feature.standardscaler中的接口
-
Params for
OnlineStandardScaler. - open(FunctionContext) - 类 中的方法org.apache.flink.ml.feature.stopwordsremover.StopWordsRemover.RemoveStopWordsFunction
- optimize(DataStream<DenseVector>, DataStream<LabeledPointWithWeight>, LossFunc) - 接口 中的方法org.apache.flink.ml.common.optimizer.Optimizer
-
Optimizes the given loss function using the initial model data and the bounded training data.
- optimize(DataStream<DenseVector>, DataStream<LabeledPointWithWeight>, LossFunc) - 类 中的方法org.apache.flink.ml.common.optimizer.SGD
- Optimizer - org.apache.flink.ml.common.optimizer中的接口
-
An optimizer is a function to modify the weight of a machine learning model, which aims to find the optimal parameter configuration for a machine learning model.
- org.apache.flink.ml - 程序包 org.apache.flink.ml
- org.apache.flink.ml.classification.knn - 程序包 org.apache.flink.ml.classification.knn
- org.apache.flink.ml.classification.linearsvc - 程序包 org.apache.flink.ml.classification.linearsvc
- org.apache.flink.ml.classification.logisticregression - 程序包 org.apache.flink.ml.classification.logisticregression
- org.apache.flink.ml.classification.naivebayes - 程序包 org.apache.flink.ml.classification.naivebayes
- org.apache.flink.ml.clustering.agglomerativeclustering - 程序包 org.apache.flink.ml.clustering.agglomerativeclustering
- org.apache.flink.ml.clustering.kmeans - 程序包 org.apache.flink.ml.clustering.kmeans
- org.apache.flink.ml.common.lossfunc - 程序包 org.apache.flink.ml.common.lossfunc
- org.apache.flink.ml.common.optimizer - 程序包 org.apache.flink.ml.common.optimizer
- org.apache.flink.ml.common.param - 程序包 org.apache.flink.ml.common.param
- org.apache.flink.ml.common.typeinfo - 程序包 org.apache.flink.ml.common.typeinfo
- org.apache.flink.ml.common.util - 程序包 org.apache.flink.ml.common.util
- org.apache.flink.ml.evaluation.binaryclassification - 程序包 org.apache.flink.ml.evaluation.binaryclassification
- org.apache.flink.ml.feature.binarizer - 程序包 org.apache.flink.ml.feature.binarizer
- org.apache.flink.ml.feature.bucketizer - 程序包 org.apache.flink.ml.feature.bucketizer
- org.apache.flink.ml.feature.countvectorizer - 程序包 org.apache.flink.ml.feature.countvectorizer
- org.apache.flink.ml.feature.dct - 程序包 org.apache.flink.ml.feature.dct
- org.apache.flink.ml.feature.elementwiseproduct - 程序包 org.apache.flink.ml.feature.elementwiseproduct
- org.apache.flink.ml.feature.featurehasher - 程序包 org.apache.flink.ml.feature.featurehasher
- org.apache.flink.ml.feature.hashingtf - 程序包 org.apache.flink.ml.feature.hashingtf
- org.apache.flink.ml.feature.idf - 程序包 org.apache.flink.ml.feature.idf
- org.apache.flink.ml.feature.imputer - 程序包 org.apache.flink.ml.feature.imputer
- org.apache.flink.ml.feature.interaction - 程序包 org.apache.flink.ml.feature.interaction
- org.apache.flink.ml.feature.kbinsdiscretizer - 程序包 org.apache.flink.ml.feature.kbinsdiscretizer
- org.apache.flink.ml.feature.lsh - 程序包 org.apache.flink.ml.feature.lsh
- org.apache.flink.ml.feature.maxabsscaler - 程序包 org.apache.flink.ml.feature.maxabsscaler
- org.apache.flink.ml.feature.minmaxscaler - 程序包 org.apache.flink.ml.feature.minmaxscaler
- org.apache.flink.ml.feature.ngram - 程序包 org.apache.flink.ml.feature.ngram
- org.apache.flink.ml.feature.normalizer - 程序包 org.apache.flink.ml.feature.normalizer
- org.apache.flink.ml.feature.onehotencoder - 程序包 org.apache.flink.ml.feature.onehotencoder
- org.apache.flink.ml.feature.polynomialexpansion - 程序包 org.apache.flink.ml.feature.polynomialexpansion
- org.apache.flink.ml.feature.randomsplitter - 程序包 org.apache.flink.ml.feature.randomsplitter
- org.apache.flink.ml.feature.regextokenizer - 程序包 org.apache.flink.ml.feature.regextokenizer
- org.apache.flink.ml.feature.robustscaler - 程序包 org.apache.flink.ml.feature.robustscaler
- org.apache.flink.ml.feature.sqltransformer - 程序包 org.apache.flink.ml.feature.sqltransformer
- org.apache.flink.ml.feature.standardscaler - 程序包 org.apache.flink.ml.feature.standardscaler
- org.apache.flink.ml.feature.stopwordsremover - 程序包 org.apache.flink.ml.feature.stopwordsremover
- org.apache.flink.ml.feature.stringindexer - 程序包 org.apache.flink.ml.feature.stringindexer
- org.apache.flink.ml.feature.tokenizer - 程序包 org.apache.flink.ml.feature.tokenizer
- org.apache.flink.ml.feature.univariatefeatureselector - 程序包 org.apache.flink.ml.feature.univariatefeatureselector
- org.apache.flink.ml.feature.variancethresholdselector - 程序包 org.apache.flink.ml.feature.variancethresholdselector
- org.apache.flink.ml.feature.vectorassembler - 程序包 org.apache.flink.ml.feature.vectorassembler
- org.apache.flink.ml.feature.vectorindexer - 程序包 org.apache.flink.ml.feature.vectorindexer
- org.apache.flink.ml.feature.vectorslicer - 程序包 org.apache.flink.ml.feature.vectorslicer
- org.apache.flink.ml.recommendation.swing - 程序包 org.apache.flink.ml.recommendation.swing
- org.apache.flink.ml.regression.linearregression - 程序包 org.apache.flink.ml.regression.linearregression
- org.apache.flink.ml.stats.anovatest - 程序包 org.apache.flink.ml.stats.anovatest
- org.apache.flink.ml.stats.chisqtest - 程序包 org.apache.flink.ml.stats.chisqtest
- org.apache.flink.ml.stats.fvaluetest - 程序包 org.apache.flink.ml.stats.fvaluetest
P
- P - 接口 中的静态变量org.apache.flink.ml.feature.normalizer.NormalizerParams
- packedFeatures - 类 中的变量org.apache.flink.ml.classification.knn.KnnModelData
- PATTERN - 接口 中的静态变量org.apache.flink.ml.feature.regextokenizer.RegexTokenizerParams
- PERCENTILE - 接口 中的静态变量org.apache.flink.ml.feature.univariatefeatureselector.UnivariateFeatureSelectorParams
- piArray - 类 中的变量org.apache.flink.ml.classification.naivebayes.NaiveBayesModelData
-
Log of class priors, whose dimension is C (number of classes).
- PolynomialExpansion - org.apache.flink.ml.feature.polynomialexpansion中的类
-
A Transformer that expands the input vectors in polynomial space.
- PolynomialExpansion() - 类 的构造器org.apache.flink.ml.feature.polynomialexpansion.PolynomialExpansion
- PolynomialExpansionParams<T> - org.apache.flink.ml.feature.polynomialexpansion中的接口
-
Params of
PolynomialExpansion. - PriorityQueueSerializer<T> - org.apache.flink.ml.common.typeinfo中的类
-
TypeSerializer for
PriorityQueue. - PriorityQueueSerializer(Comparator<? super T>, TypeSerializer<T>) - 类 的构造器org.apache.flink.ml.common.typeinfo.PriorityQueueSerializer
- PriorityQueueTypeInfo<T> - org.apache.flink.ml.common.typeinfo中的类
-
TypeInformation for
PriorityQueue. - PriorityQueueTypeInfo(Comparator<? super T>, TypeInformation<T>) - 类 的构造器org.apache.flink.ml.common.typeinfo.PriorityQueueTypeInfo
- processElement(StreamRecord<DenseVector>) - 类 中的方法org.apache.flink.ml.feature.minmaxscaler.MinMaxScaler.MinMaxReduceFunctionOperator
Q
- QUANTILE - 接口 中的静态变量org.apache.flink.ml.feature.kbinsdiscretizer.KBinsDiscretizerParams
- QuantileSummary - org.apache.flink.ml.common.util中的类
-
Helper class to compute an approximate quantile summary.
- QuantileSummary() - 类 的构造器org.apache.flink.ml.common.util.QuantileSummary
-
Empty QuantileSummary Constructor.
- QuantileSummary(double) - 类 的构造器org.apache.flink.ml.common.util.QuantileSummary
-
QuantileSummary Constructor.
- QuantileSummary(double, int) - 类 的构造器org.apache.flink.ml.common.util.QuantileSummary
-
QuantileSummary Constructor.
- QuantileSummary(double, int, List<QuantileSummary.StatsTuple>, long, boolean) - 类 的构造器org.apache.flink.ml.common.util.QuantileSummary
-
QuantileSummary Constructor.
- QuantileSummary.StatsTuple - org.apache.flink.ml.common.util中的类
-
Wrapper class to hold all statistics from the Greenwald-Khanna paper.
- QuantileSummaryTypeInfoFactory - org.apache.flink.ml.common.typeinfo中的类
- QuantileSummaryTypeInfoFactory() - 类 的构造器org.apache.flink.ml.common.typeinfo.QuantileSummaryTypeInfoFactory
- query(double) - 类 中的方法org.apache.flink.ml.common.util.QuantileSummary
-
Runs a query for a given percentile.
- query(double[]) - 类 中的方法org.apache.flink.ml.common.util.QuantileSummary
-
Runs a query for a given sequence of percentiles.
R
- randCoefficientA - 类 中的变量org.apache.flink.ml.feature.lsh.MinHashLSHModelData
- randCoefficientB - 类 中的变量org.apache.flink.ml.feature.lsh.MinHashLSHModelData
- RandomSplitter - org.apache.flink.ml.feature.randomsplitter中的类
-
An AlgoOperator which splits a Table into N Tables according to the given weights.
- RandomSplitter() - 类 的构造器org.apache.flink.ml.feature.randomsplitter.RandomSplitter
- RandomSplitterParams<T> - org.apache.flink.ml.feature.randomsplitter中的接口
-
Params of
RandomSplitter. - ranges - 类 中的变量org.apache.flink.ml.feature.robustscaler.RobustScalerModelData
- RegexTokenizer - org.apache.flink.ml.feature.regextokenizer中的类
-
A Transformer which converts the input string to lowercase and then splits it by white spaces based on regex.
- RegexTokenizer() - 类 的构造器org.apache.flink.ml.feature.regextokenizer.RegexTokenizer
- RegexTokenizer.RegexTokenizerUdf - org.apache.flink.ml.feature.regextokenizer中的类
-
The main logic of $
RegexTokenizer, which converts the input string to an array of tokens. - RegexTokenizerParams<T> - org.apache.flink.ml.feature.regextokenizer中的接口
-
Params for
RegexTokenizer. - RegexTokenizerUdf() - 类 的构造器org.apache.flink.ml.feature.regextokenizer.RegexTokenizer.RegexTokenizerUdf
- RemoveStopWordsFunction(Set<String>, Locale, boolean) - 类 的构造器org.apache.flink.ml.feature.stopwordsremover.StopWordsRemover.RemoveStopWordsFunction
- RobustScaler - org.apache.flink.ml.feature.robustscaler中的类
-
An Estimator which scales features using statistics that are robust to outliers.
- RobustScaler() - 类 的构造器org.apache.flink.ml.feature.robustscaler.RobustScaler
- RobustScalerModel - org.apache.flink.ml.feature.robustscaler中的类
-
A Model which transforms data using the model data computed by
RobustScaler. - RobustScalerModel() - 类 的构造器org.apache.flink.ml.feature.robustscaler.RobustScalerModel
- RobustScalerModelData - org.apache.flink.ml.feature.robustscaler中的类
-
Model data of
RobustScalerModel. - RobustScalerModelData() - 类 的构造器org.apache.flink.ml.feature.robustscaler.RobustScalerModelData
- RobustScalerModelData(DenseVector, DenseVector) - 类 的构造器org.apache.flink.ml.feature.robustscaler.RobustScalerModelData
- RobustScalerModelData.ModelDataDecoder - org.apache.flink.ml.feature.robustscaler中的类
-
Data decoder for the
RobustScalerModelmodel data. - RobustScalerModelData.ModelDataEncoder - org.apache.flink.ml.feature.robustscaler中的类
-
Data encoder for the
RobustScalerModelmodel data. - RobustScalerModelParams<T> - org.apache.flink.ml.feature.robustscaler中的接口
-
Params for
RobustScalerModel. - RobustScalerParams<T> - org.apache.flink.ml.feature.robustscaler中的接口
-
Params for
RobustScaler.
S
- save(String) - 类 中的方法org.apache.flink.ml.classification.knn.Knn
- save(String) - 类 中的方法org.apache.flink.ml.classification.knn.KnnModel
- save(String) - 类 中的方法org.apache.flink.ml.classification.linearsvc.LinearSVC
- save(String) - 类 中的方法org.apache.flink.ml.classification.linearsvc.LinearSVCModel
- save(String) - 类 中的方法org.apache.flink.ml.classification.logisticregression.LogisticRegression
- save(String) - 类 中的方法org.apache.flink.ml.classification.logisticregression.LogisticRegressionModel
- save(String) - 类 中的方法org.apache.flink.ml.classification.logisticregression.OnlineLogisticRegression
- save(String) - 类 中的方法org.apache.flink.ml.classification.logisticregression.OnlineLogisticRegressionModel
- save(String) - 类 中的方法org.apache.flink.ml.classification.naivebayes.NaiveBayes
- save(String) - 类 中的方法org.apache.flink.ml.classification.naivebayes.NaiveBayesModel
- save(String) - 类 中的方法org.apache.flink.ml.clustering.agglomerativeclustering.AgglomerativeClustering
- save(String) - 类 中的方法org.apache.flink.ml.clustering.kmeans.KMeans
- save(String) - 类 中的方法org.apache.flink.ml.clustering.kmeans.KMeansModel
- save(String) - 类 中的方法org.apache.flink.ml.clustering.kmeans.OnlineKMeans
-
Saves the metadata AND bounded model data table (if exists) to the given path.
- save(String) - 类 中的方法org.apache.flink.ml.clustering.kmeans.OnlineKMeansModel
-
Saves the metadata to the given path.
- save(String) - 类 中的方法org.apache.flink.ml.evaluation.binaryclassification.BinaryClassificationEvaluator
- save(String) - 类 中的方法org.apache.flink.ml.feature.binarizer.Binarizer
- save(String) - 类 中的方法org.apache.flink.ml.feature.bucketizer.Bucketizer
- save(String) - 类 中的方法org.apache.flink.ml.feature.countvectorizer.CountVectorizer
- save(String) - 类 中的方法org.apache.flink.ml.feature.countvectorizer.CountVectorizerModel
- save(String) - 类 中的方法org.apache.flink.ml.feature.dct.DCT
- save(String) - 类 中的方法org.apache.flink.ml.feature.elementwiseproduct.ElementwiseProduct
- save(String) - 类 中的方法org.apache.flink.ml.feature.featurehasher.FeatureHasher
- save(String) - 类 中的方法org.apache.flink.ml.feature.hashingtf.HashingTF
- save(String) - 类 中的方法org.apache.flink.ml.feature.idf.IDF
- save(String) - 类 中的方法org.apache.flink.ml.feature.idf.IDFModel
- save(String) - 类 中的方法org.apache.flink.ml.feature.imputer.Imputer
- save(String) - 类 中的方法org.apache.flink.ml.feature.imputer.ImputerModel
- save(String) - 类 中的方法org.apache.flink.ml.feature.interaction.Interaction
- save(String) - 类 中的方法org.apache.flink.ml.feature.kbinsdiscretizer.KBinsDiscretizer
- save(String) - 类 中的方法org.apache.flink.ml.feature.kbinsdiscretizer.KBinsDiscretizerModel
- save(String) - 类 中的方法org.apache.flink.ml.feature.lsh.MinHashLSHModel
- save(String) - 类 中的方法org.apache.flink.ml.feature.maxabsscaler.MaxAbsScaler
- save(String) - 类 中的方法org.apache.flink.ml.feature.maxabsscaler.MaxAbsScalerModel
- save(String) - 类 中的方法org.apache.flink.ml.feature.minmaxscaler.MinMaxScaler
- save(String) - 类 中的方法org.apache.flink.ml.feature.minmaxscaler.MinMaxScalerModel
- save(String) - 类 中的方法org.apache.flink.ml.feature.ngram.NGram
- save(String) - 类 中的方法org.apache.flink.ml.feature.normalizer.Normalizer
- save(String) - 类 中的方法org.apache.flink.ml.feature.onehotencoder.OneHotEncoder
- save(String) - 类 中的方法org.apache.flink.ml.feature.onehotencoder.OneHotEncoderModel
- save(String) - 类 中的方法org.apache.flink.ml.feature.polynomialexpansion.PolynomialExpansion
- save(String) - 类 中的方法org.apache.flink.ml.feature.randomsplitter.RandomSplitter
- save(String) - 类 中的方法org.apache.flink.ml.feature.regextokenizer.RegexTokenizer
- save(String) - 类 中的方法org.apache.flink.ml.feature.robustscaler.RobustScaler
- save(String) - 类 中的方法org.apache.flink.ml.feature.robustscaler.RobustScalerModel
- save(String) - 类 中的方法org.apache.flink.ml.feature.sqltransformer.SQLTransformer
- save(String) - 类 中的方法org.apache.flink.ml.feature.standardscaler.OnlineStandardScaler
- save(String) - 类 中的方法org.apache.flink.ml.feature.standardscaler.OnlineStandardScalerModel
- save(String) - 类 中的方法org.apache.flink.ml.feature.standardscaler.StandardScaler
- save(String) - 类 中的方法org.apache.flink.ml.feature.standardscaler.StandardScalerModel
- save(String) - 类 中的方法org.apache.flink.ml.feature.stopwordsremover.StopWordsRemover
- save(String) - 类 中的方法org.apache.flink.ml.feature.stringindexer.IndexToStringModel
- save(String) - 类 中的方法org.apache.flink.ml.feature.stringindexer.StringIndexer
- save(String) - 类 中的方法org.apache.flink.ml.feature.stringindexer.StringIndexerModel
- save(String) - 类 中的方法org.apache.flink.ml.feature.tokenizer.Tokenizer
- save(String) - 类 中的方法org.apache.flink.ml.feature.univariatefeatureselector.UnivariateFeatureSelector
- save(String) - 类 中的方法org.apache.flink.ml.feature.univariatefeatureselector.UnivariateFeatureSelectorModel
- save(String) - 类 中的方法org.apache.flink.ml.feature.variancethresholdselector.VarianceThresholdSelector
- save(String) - 类 中的方法org.apache.flink.ml.feature.variancethresholdselector.VarianceThresholdSelectorModel
- save(String) - 类 中的方法org.apache.flink.ml.feature.vectorassembler.VectorAssembler
- save(String) - 类 中的方法org.apache.flink.ml.feature.vectorindexer.VectorIndexer
- save(String) - 类 中的方法org.apache.flink.ml.feature.vectorindexer.VectorIndexerModel
- save(String) - 类 中的方法org.apache.flink.ml.feature.vectorslicer.VectorSlicer
- save(String) - 类 中的方法org.apache.flink.ml.recommendation.swing.Swing
- save(String) - 类 中的方法org.apache.flink.ml.regression.linearregression.LinearRegression
- save(String) - 类 中的方法org.apache.flink.ml.regression.linearregression.LinearRegressionModel
- save(String) - 类 中的方法org.apache.flink.ml.stats.anovatest.ANOVATest
- save(String) - 类 中的方法org.apache.flink.ml.stats.chisqtest.ChiSqTest
- save(String) - 类 中的方法org.apache.flink.ml.stats.fvaluetest.FValueTest
- SCALING_VEC - 接口 中的静态变量org.apache.flink.ml.feature.elementwiseproduct.ElementwiseProductParams
- selectByIndices(Vector, int[]) - 类 中的静态方法org.apache.flink.ml.common.util.VectorUtils
-
Selects a subset of the vector base on the indices.
- SELECTION_MODE - 接口 中的静态变量org.apache.flink.ml.feature.univariatefeatureselector.UnivariateFeatureSelectorParams
-
Supported options of the feature selection mode.
- SELECTION_THRESHOLD - 接口 中的静态变量org.apache.flink.ml.feature.univariatefeatureselector.UnivariateFeatureSelectorParams
- selectRandomCentroids(DataStream<DenseVector>, int, long) - 类 中的静态方法org.apache.flink.ml.clustering.kmeans.KMeans
- serialize(PriorityQueue<T>, DataOutputView) - 类 中的方法org.apache.flink.ml.common.typeinfo.PriorityQueueSerializer
- setAlpha(Double) - 接口 中的方法org.apache.flink.ml.classification.logisticregression.OnlineLogisticRegressionParams
- setAlpha1(Integer) - 接口 中的方法org.apache.flink.ml.recommendation.swing.SwingParams
- setAlpha2(Integer) - 接口 中的方法org.apache.flink.ml.recommendation.swing.SwingParams
- setBeta(Double) - 接口 中的方法org.apache.flink.ml.classification.logisticregression.OnlineLogisticRegressionParams
- setBeta(Double) - 接口 中的方法org.apache.flink.ml.recommendation.swing.SwingParams
- setBinary(boolean) - 接口 中的方法org.apache.flink.ml.feature.countvectorizer.CountVectorizerModelParams
- setBinary(boolean) - 接口 中的方法org.apache.flink.ml.feature.hashingtf.HashingTFParams
- setCaseSensitive(boolean) - 接口 中的方法org.apache.flink.ml.feature.stopwordsremover.StopWordsRemoverParams
- setComputeFullTree(Boolean) - 接口 中的方法org.apache.flink.ml.clustering.agglomerativeclustering.AgglomerativeClusteringParams
- setDegree(Integer) - 接口 中的方法org.apache.flink.ml.feature.polynomialexpansion.PolynomialExpansionParams
- setDistanceThreshold(Double) - 接口 中的方法org.apache.flink.ml.clustering.agglomerativeclustering.AgglomerativeClusteringParams
- setDropLast(boolean) - 接口 中的方法org.apache.flink.ml.feature.onehotencoder.OneHotEncoderParams
- setFeatureType(String) - 接口 中的方法org.apache.flink.ml.feature.univariatefeatureselector.UnivariateFeatureSelectorParams
- setGaps(boolean) - 接口 中的方法org.apache.flink.ml.feature.regextokenizer.RegexTokenizerParams
- setIndices(Integer...) - 接口 中的方法org.apache.flink.ml.feature.vectorslicer.VectorSlicerParams
- setInitialModelData(Table) - 类 中的方法org.apache.flink.ml.classification.logisticregression.OnlineLogisticRegression
-
Sets the initial model data of the online training process with the provided model data table.
- setInitialModelData(Table) - 类 中的方法org.apache.flink.ml.clustering.kmeans.OnlineKMeans
-
Sets the initial model data of the online training process with the provided model data table.
- setInitMode(String) - 接口 中的方法org.apache.flink.ml.clustering.kmeans.KMeansParams
- setInputSizes(Integer...) - 接口 中的方法org.apache.flink.ml.feature.vectorassembler.VectorAssemblerParams
- setInverse(boolean) - 接口 中的方法org.apache.flink.ml.feature.dct.DCTParams
- setItemCol(String) - 接口 中的方法org.apache.flink.ml.recommendation.swing.SwingParams
- setK(int) - 接口 中的方法org.apache.flink.ml.clustering.kmeans.KMeansModelParams
- setK(Integer) - 接口 中的方法org.apache.flink.ml.classification.knn.KnnModelParams
- setK(Integer) - 接口 中的方法org.apache.flink.ml.recommendation.swing.SwingParams
- setLabelType(String) - 接口 中的方法org.apache.flink.ml.feature.univariatefeatureselector.UnivariateFeatureSelectorParams
- setLinkage(String) - 接口 中的方法org.apache.flink.ml.clustering.agglomerativeclustering.AgglomerativeClusteringParams
- setLocale(String) - 接口 中的方法org.apache.flink.ml.feature.stopwordsremover.StopWordsRemoverParams
- setLower(Double) - 接口 中的方法org.apache.flink.ml.feature.robustscaler.RobustScalerParams
- setMax(Double) - 接口 中的方法org.apache.flink.ml.feature.minmaxscaler.MinMaxScalerParams
- setMaxCategories(int) - 接口 中的方法org.apache.flink.ml.feature.vectorindexer.VectorIndexerParams
- setMaxDF(double) - 接口 中的方法org.apache.flink.ml.feature.countvectorizer.CountVectorizerParams
- setMaxIndexNum(int) - 接口 中的方法org.apache.flink.ml.feature.stringindexer.StringIndexerParams
- setMaxUserBehavior(Integer) - 接口 中的方法org.apache.flink.ml.recommendation.swing.SwingParams
- setMaxUserNumPerItem(Integer) - 接口 中的方法org.apache.flink.ml.recommendation.swing.SwingParams
- setMetricsNames(String...) - 接口 中的方法org.apache.flink.ml.evaluation.binaryclassification.BinaryClassificationEvaluatorParams
- setMin(Double) - 接口 中的方法org.apache.flink.ml.feature.minmaxscaler.MinMaxScalerParams
- setMinDF(double) - 接口 中的方法org.apache.flink.ml.feature.countvectorizer.CountVectorizerParams
- setMinDocFreq(Integer) - 接口 中的方法org.apache.flink.ml.feature.idf.IDFParams
- setMinTF(double) - 接口 中的方法org.apache.flink.ml.feature.countvectorizer.CountVectorizerModelParams
- setMinTokenLength(int) - 接口 中的方法org.apache.flink.ml.feature.regextokenizer.RegexTokenizerParams
- setMinUserBehavior(Integer) - 接口 中的方法org.apache.flink.ml.recommendation.swing.SwingParams
- setMissingValue(double) - 接口 中的方法org.apache.flink.ml.feature.imputer.ImputerModelParams
- setModelData(Table...) - 类 中的方法org.apache.flink.ml.classification.knn.KnnModel
- setModelData(Table...) - 类 中的方法org.apache.flink.ml.classification.linearsvc.LinearSVCModel
- setModelData(Table...) - 类 中的方法org.apache.flink.ml.classification.logisticregression.LogisticRegressionModel
- setModelData(Table...) - 类 中的方法org.apache.flink.ml.classification.logisticregression.OnlineLogisticRegressionModel
- setModelData(Table...) - 类 中的方法org.apache.flink.ml.classification.naivebayes.NaiveBayesModel
- setModelData(Table...) - 类 中的方法org.apache.flink.ml.clustering.kmeans.KMeansModel
- setModelData(Table...) - 类 中的方法org.apache.flink.ml.clustering.kmeans.OnlineKMeansModel
- setModelData(Table...) - 类 中的方法org.apache.flink.ml.feature.countvectorizer.CountVectorizerModel
- setModelData(Table...) - 类 中的方法org.apache.flink.ml.feature.idf.IDFModel
- setModelData(Table...) - 类 中的方法org.apache.flink.ml.feature.imputer.ImputerModel
- setModelData(Table...) - 类 中的方法org.apache.flink.ml.feature.kbinsdiscretizer.KBinsDiscretizerModel
- setModelData(Table...) - 类 中的方法org.apache.flink.ml.feature.maxabsscaler.MaxAbsScalerModel
- setModelData(Table...) - 类 中的方法org.apache.flink.ml.feature.minmaxscaler.MinMaxScalerModel
- setModelData(Table...) - 类 中的方法org.apache.flink.ml.feature.onehotencoder.OneHotEncoderModel
- setModelData(Table...) - 类 中的方法org.apache.flink.ml.feature.robustscaler.RobustScalerModel
- setModelData(Table...) - 类 中的方法org.apache.flink.ml.feature.standardscaler.OnlineStandardScalerModel
- setModelData(Table...) - 类 中的方法org.apache.flink.ml.feature.standardscaler.StandardScalerModel
- setModelData(Table...) - 类 中的方法org.apache.flink.ml.feature.stringindexer.IndexToStringModel
- setModelData(Table...) - 类 中的方法org.apache.flink.ml.feature.stringindexer.StringIndexerModel
- setModelData(Table...) - 类 中的方法org.apache.flink.ml.feature.univariatefeatureselector.UnivariateFeatureSelectorModel
- setModelData(Table...) - 类 中的方法org.apache.flink.ml.feature.variancethresholdselector.VarianceThresholdSelectorModel
- setModelData(Table...) - 类 中的方法org.apache.flink.ml.feature.vectorindexer.VectorIndexerModel
- setModelData(Table...) - 类 中的方法org.apache.flink.ml.regression.linearregression.LinearRegressionModel
- setModelType(String) - 接口 中的方法org.apache.flink.ml.classification.naivebayes.NaiveBayesModelParams
- setModelVersionCol(String) - 接口 中的方法org.apache.flink.ml.classification.logisticregression.OnlineLogisticRegressionModelParams
- setN(int) - 接口 中的方法org.apache.flink.ml.feature.ngram.NGramParams
- setNumBins(int) - 接口 中的方法org.apache.flink.ml.feature.kbinsdiscretizer.KBinsDiscretizerParams
- setNumClusters(Integer) - 接口 中的方法org.apache.flink.ml.clustering.agglomerativeclustering.AgglomerativeClusteringParams
- setNumHashFunctionsPerTable(Integer) - 接口 中的方法org.apache.flink.ml.feature.lsh.LSHParams
- setNumHashTables(Integer) - 接口 中的方法org.apache.flink.ml.feature.lsh.LSHParams
- setP(Double) - 接口 中的方法org.apache.flink.ml.feature.normalizer.NormalizerParams
- setPattern(String) - 接口 中的方法org.apache.flink.ml.feature.regextokenizer.RegexTokenizerParams
- setScalingVec(Vector) - 接口 中的方法org.apache.flink.ml.feature.elementwiseproduct.ElementwiseProductParams
- setSelectionMode(String) - 接口 中的方法org.apache.flink.ml.feature.univariatefeatureselector.UnivariateFeatureSelectorParams
- setSelectionThreshold(double) - 接口 中的方法org.apache.flink.ml.feature.univariatefeatureselector.UnivariateFeatureSelectorParams
- setSmoothing(Double) - 接口 中的方法org.apache.flink.ml.classification.naivebayes.NaiveBayesParams
- setSplitsArray(Double[][]) - 接口 中的方法org.apache.flink.ml.feature.bucketizer.BucketizerParams
- setStatement(String) - 接口 中的方法org.apache.flink.ml.feature.sqltransformer.SQLTransformerParams
- setStopWords(String[]) - 接口 中的方法org.apache.flink.ml.feature.stopwordsremover.StopWordsRemoverParams
- setStrategy(String) - 接口 中的方法org.apache.flink.ml.feature.imputer.ImputerParams
- setStrategy(String) - 接口 中的方法org.apache.flink.ml.feature.kbinsdiscretizer.KBinsDiscretizerParams
- setStringOrderType(String) - 接口 中的方法org.apache.flink.ml.feature.stringindexer.StringIndexerParams
- setSubSamples(Integer) - 接口 中的方法org.apache.flink.ml.feature.kbinsdiscretizer.KBinsDiscretizerParams
- setThreshold(Double) - 接口 中的方法org.apache.flink.ml.classification.linearsvc.LinearSVCModelParams
- setThresholds(Double...) - 接口 中的方法org.apache.flink.ml.feature.binarizer.BinarizerParams
- setToLowercase(boolean) - 接口 中的方法org.apache.flink.ml.feature.regextokenizer.RegexTokenizerParams
- setUpper(Double) - 接口 中的方法org.apache.flink.ml.feature.robustscaler.RobustScalerParams
- setUserCol(String) - 接口 中的方法org.apache.flink.ml.recommendation.swing.SwingParams
- setVarianceThreshold(double) - 接口 中的方法org.apache.flink.ml.feature.variancethresholdselector.VarianceThresholdSelectorParams
- setVocabularySize(int) - 接口 中的方法org.apache.flink.ml.feature.countvectorizer.CountVectorizerParams
- setWeights(Double...) - 接口 中的方法org.apache.flink.ml.feature.randomsplitter.RandomSplitterParams
- setWindows(Windows) - 接口 中的方法org.apache.flink.ml.common.param.HasWindows
- setWithCentering(boolean) - 接口 中的方法org.apache.flink.ml.feature.robustscaler.RobustScalerModelParams
- setWithMean(boolean) - 接口 中的方法org.apache.flink.ml.feature.standardscaler.StandardScalerParams
- setWithScaling(boolean) - 接口 中的方法org.apache.flink.ml.feature.robustscaler.RobustScalerModelParams
- setWithStd(boolean) - 接口 中的方法org.apache.flink.ml.feature.standardscaler.StandardScalerParams
- SGD - org.apache.flink.ml.common.optimizer中的类
-
Stochastic Gradient Descent (SGD) is the mostly wide-used optimizer for optimizing machine learning models.
- SGD(int, double, int, double, double, double) - 类 的构造器org.apache.flink.ml.common.optimizer.SGD
- shallowCopy() - 类 中的方法org.apache.flink.ml.common.util.QuantileSummary.StatsTuple
- sizesValidator() - 接口 中的静态方法org.apache.flink.ml.feature.vectorassembler.VectorAssemblerParams
- SMOOTHING - 接口 中的静态变量org.apache.flink.ml.classification.naivebayes.NaiveBayesParams
- snapshotConfiguration() - 类 中的方法org.apache.flink.ml.common.typeinfo.PriorityQueueSerializer
- snapshotState(StateSnapshotContext) - 类 中的方法org.apache.flink.ml.feature.minmaxscaler.MinMaxScaler.MinMaxReduceFunctionOperator
- SPLITS_ARRAY - 接口 中的静态变量org.apache.flink.ml.feature.bucketizer.BucketizerParams
-
The array of split points for mapping continuous features into buckets for multiple columns.
- SplitsArrayValidator() - 类 的构造器org.apache.flink.ml.feature.bucketizer.BucketizerParams.SplitsArrayValidator
- SQLStatementValidator() - 类 的构造器org.apache.flink.ml.feature.sqltransformer.SQLTransformerParams.SQLStatementValidator
- SQLTransformer - org.apache.flink.ml.feature.sqltransformer中的类
-
SQLTransformer implements the transformations that are defined by SQL statement.
- SQLTransformer() - 类 的构造器org.apache.flink.ml.feature.sqltransformer.SQLTransformer
- SQLTransformerParams<T> - org.apache.flink.ml.feature.sqltransformer中的接口
-
Params for
SQLTransformer. - SQLTransformerParams.SQLStatementValidator - org.apache.flink.ml.feature.sqltransformer中的类
-
Param validator for SQL statements.
- StandardScaler - org.apache.flink.ml.feature.standardscaler中的类
-
An Estimator which implements the standard scaling algorithm.
- StandardScaler() - 类 的构造器org.apache.flink.ml.feature.standardscaler.StandardScaler
- StandardScalerModel - org.apache.flink.ml.feature.standardscaler中的类
-
A Model which transforms data using the model data computed by
StandardScaler. - StandardScalerModel() - 类 的构造器org.apache.flink.ml.feature.standardscaler.StandardScalerModel
- StandardScalerModelData - org.apache.flink.ml.feature.standardscaler中的类
-
Model data of
StandardScalerModel. - StandardScalerModelData() - 类 的构造器org.apache.flink.ml.feature.standardscaler.StandardScalerModelData
- StandardScalerModelData(DenseVector, DenseVector) - 类 的构造器org.apache.flink.ml.feature.standardscaler.StandardScalerModelData
- StandardScalerModelData(DenseVector, DenseVector, long, long) - 类 的构造器org.apache.flink.ml.feature.standardscaler.StandardScalerModelData
- StandardScalerModelData.ModelDataDecoder - org.apache.flink.ml.feature.standardscaler中的类
-
Data decoder for the
StandardScalerModelmodel data. - StandardScalerModelData.ModelDataEncoder - org.apache.flink.ml.feature.standardscaler中的类
-
Data encoder for the
StandardScalerModelmodel data. - StandardScalerParams<T> - org.apache.flink.ml.feature.standardscaler中的接口
-
Params for
StandardScaler. - STATEMENT - 接口 中的静态变量org.apache.flink.ml.feature.sqltransformer.SQLTransformerParams
- StatsTuple() - 类 的构造器org.apache.flink.ml.common.util.QuantileSummary.StatsTuple
- StatsTuple(double, long, long) - 类 的构造器org.apache.flink.ml.common.util.QuantileSummary.StatsTuple
- std - 类 中的变量org.apache.flink.ml.feature.standardscaler.StandardScalerModelData
-
Standard deviation of each dimension.
- STOP_WORDS - 接口 中的静态变量org.apache.flink.ml.feature.stopwordsremover.StopWordsRemoverParams
- StopWordsRemover - org.apache.flink.ml.feature.stopwordsremover中的类
-
A feature transformer that filters out stop words from input.
- StopWordsRemover() - 类 的构造器org.apache.flink.ml.feature.stopwordsremover.StopWordsRemover
- StopWordsRemover.RemoveStopWordsFunction - org.apache.flink.ml.feature.stopwordsremover中的类
-
A Scalar Function that removes stop words from input string array.
- StopWordsRemoverParams<T> - org.apache.flink.ml.feature.stopwordsremover中的接口
-
Params of
StopWordsRemover. - STRATEGY - 接口 中的静态变量org.apache.flink.ml.feature.imputer.ImputerParams
-
Supported options of the imputation strategy.
- STRATEGY - 接口 中的静态变量org.apache.flink.ml.feature.kbinsdiscretizer.KBinsDiscretizerParams
-
Supported options to define the widths of the bins are listed as follows.
- STRING_ORDER_TYPE - 接口 中的静态变量org.apache.flink.ml.feature.stringindexer.StringIndexerParams
-
Supported options to decide the order of strings in each column are listed as follows.
- stringArrays - 类 中的变量org.apache.flink.ml.feature.stringindexer.StringIndexerModelData
-
Ordered strings of each input column.
- StringIndexer - org.apache.flink.ml.feature.stringindexer中的类
-
An Estimator which implements the string indexing algorithm.
- StringIndexer() - 类 的构造器org.apache.flink.ml.feature.stringindexer.StringIndexer
- StringIndexerModel - org.apache.flink.ml.feature.stringindexer中的类
-
A Model which transforms input string/numeric column(s) to double column(s) using the model data computed by
StringIndexer. - StringIndexerModel() - 类 的构造器org.apache.flink.ml.feature.stringindexer.StringIndexerModel
- StringIndexerModelData - org.apache.flink.ml.feature.stringindexer中的类
-
Model data of
StringIndexerModelandIndexToStringModel. - StringIndexerModelData() - 类 的构造器org.apache.flink.ml.feature.stringindexer.StringIndexerModelData
- StringIndexerModelData(String[][]) - 类 的构造器org.apache.flink.ml.feature.stringindexer.StringIndexerModelData
- StringIndexerModelData.ModelDataDecoder - org.apache.flink.ml.feature.stringindexer中的类
-
Data decoder for
StringIndexerModelandIndexToStringModel. - StringIndexerModelData.ModelDataEncoder - org.apache.flink.ml.feature.stringindexer中的类
-
Data encoder for
StringIndexerModelandIndexToStringModel. - StringIndexerModelParams<T> - org.apache.flink.ml.feature.stringindexer中的接口
-
Params of
StringIndexerModel. - StringIndexerParams<T> - org.apache.flink.ml.feature.stringindexer中的接口
-
Params of
StringIndexer. - SUB_SAMPLES - 接口 中的静态变量org.apache.flink.ml.feature.kbinsdiscretizer.KBinsDiscretizerParams
- surrogates - 类 中的变量org.apache.flink.ml.feature.imputer.ImputerModelData
- Swing - org.apache.flink.ml.recommendation.swing中的类
-
An AlgoOperator which implements the Swing algorithm.
- Swing() - 类 的构造器org.apache.flink.ml.recommendation.swing.Swing
- SwingParams<T> - org.apache.flink.ml.recommendation.swing中的接口
-
Params for
Swing.
T
- taskId - 类 中的变量org.apache.flink.ml.evaluation.binaryclassification.BinaryClassificationEvaluator.BinarySummary
- theta - 类 中的变量org.apache.flink.ml.classification.naivebayes.NaiveBayesModelData
-
Log of class conditional probabilities, whose dimension is C (number of classes) by D (number of features).
- THRESHOLD - 接口 中的静态变量org.apache.flink.ml.classification.linearsvc.LinearSVCModelParams
-
Param for threshold in linear support vector classifier.
- THRESHOLDS - 接口 中的静态变量org.apache.flink.ml.feature.binarizer.BinarizerParams
- timestamp - 类 中的变量org.apache.flink.ml.feature.standardscaler.StandardScalerModelData
-
Model timestamp.
- TO_LOWERCASE - 接口 中的静态变量org.apache.flink.ml.feature.regextokenizer.RegexTokenizerParams
- Tokenizer - org.apache.flink.ml.feature.tokenizer中的类
-
A Transformer which converts the input string to lowercase and then splits it by white spaces.
- Tokenizer() - 类 的构造器org.apache.flink.ml.feature.tokenizer.Tokenizer
- Tokenizer.TokenizerUdf - org.apache.flink.ml.feature.tokenizer中的类
-
The main logic of
Tokenizer, which converts the input string to an array of tokens. - TokenizerParams<T> - org.apache.flink.ml.feature.tokenizer中的接口
-
Params of
Tokenizer. - TokenizerUdf() - 类 的构造器org.apache.flink.ml.feature.tokenizer.Tokenizer.TokenizerUdf
- toString() - 类 中的方法org.apache.flink.ml.common.typeinfo.PriorityQueueTypeInfo
- transform(Table...) - 类 中的方法org.apache.flink.ml.classification.knn.KnnModel
- transform(Table...) - 类 中的方法org.apache.flink.ml.classification.linearsvc.LinearSVCModel
- transform(Table...) - 类 中的方法org.apache.flink.ml.classification.logisticregression.LogisticRegressionModel
- transform(Table...) - 类 中的方法org.apache.flink.ml.classification.logisticregression.OnlineLogisticRegressionModel
- transform(Table...) - 类 中的方法org.apache.flink.ml.classification.naivebayes.NaiveBayesModel
- transform(Table...) - 类 中的方法org.apache.flink.ml.clustering.agglomerativeclustering.AgglomerativeClustering
- transform(Table...) - 类 中的方法org.apache.flink.ml.clustering.kmeans.KMeansModel
- transform(Table...) - 类 中的方法org.apache.flink.ml.clustering.kmeans.OnlineKMeansModel
- transform(Table...) - 类 中的方法org.apache.flink.ml.evaluation.binaryclassification.BinaryClassificationEvaluator
- transform(Table...) - 类 中的方法org.apache.flink.ml.feature.binarizer.Binarizer
- transform(Table...) - 类 中的方法org.apache.flink.ml.feature.bucketizer.Bucketizer
- transform(Table...) - 类 中的方法org.apache.flink.ml.feature.countvectorizer.CountVectorizerModel
- transform(Table...) - 类 中的方法org.apache.flink.ml.feature.dct.DCT
- transform(Table...) - 类 中的方法org.apache.flink.ml.feature.elementwiseproduct.ElementwiseProduct
- transform(Table...) - 类 中的方法org.apache.flink.ml.feature.featurehasher.FeatureHasher
- transform(Table...) - 类 中的方法org.apache.flink.ml.feature.hashingtf.HashingTF
- transform(Table...) - 类 中的方法org.apache.flink.ml.feature.idf.IDFModel
- transform(Table...) - 类 中的方法org.apache.flink.ml.feature.imputer.ImputerModel
- transform(Table...) - 类 中的方法org.apache.flink.ml.feature.interaction.Interaction
- transform(Table...) - 类 中的方法org.apache.flink.ml.feature.kbinsdiscretizer.KBinsDiscretizerModel
- transform(Table...) - 类 中的方法org.apache.flink.ml.feature.maxabsscaler.MaxAbsScalerModel
- transform(Table...) - 类 中的方法org.apache.flink.ml.feature.minmaxscaler.MinMaxScalerModel
- transform(Table...) - 类 中的方法org.apache.flink.ml.feature.ngram.NGram
- transform(Table...) - 类 中的方法org.apache.flink.ml.feature.normalizer.Normalizer
- transform(Table...) - 类 中的方法org.apache.flink.ml.feature.onehotencoder.OneHotEncoderModel
- transform(Table...) - 类 中的方法org.apache.flink.ml.feature.polynomialexpansion.PolynomialExpansion
- transform(Table...) - 类 中的方法org.apache.flink.ml.feature.randomsplitter.RandomSplitter
- transform(Table...) - 类 中的方法org.apache.flink.ml.feature.regextokenizer.RegexTokenizer
- transform(Table...) - 类 中的方法org.apache.flink.ml.feature.robustscaler.RobustScalerModel
- transform(Table...) - 类 中的方法org.apache.flink.ml.feature.sqltransformer.SQLTransformer
- transform(Table...) - 类 中的方法org.apache.flink.ml.feature.standardscaler.OnlineStandardScalerModel
- transform(Table...) - 类 中的方法org.apache.flink.ml.feature.standardscaler.StandardScalerModel
- transform(Table...) - 类 中的方法org.apache.flink.ml.feature.stopwordsremover.StopWordsRemover
- transform(Table...) - 类 中的方法org.apache.flink.ml.feature.stringindexer.IndexToStringModel
- transform(Table...) - 类 中的方法org.apache.flink.ml.feature.stringindexer.StringIndexerModel
- transform(Table...) - 类 中的方法org.apache.flink.ml.feature.tokenizer.Tokenizer
- transform(Table...) - 类 中的方法org.apache.flink.ml.feature.univariatefeatureselector.UnivariateFeatureSelectorModel
- transform(Table...) - 类 中的方法org.apache.flink.ml.feature.variancethresholdselector.VarianceThresholdSelectorModel
- transform(Table...) - 类 中的方法org.apache.flink.ml.feature.vectorassembler.VectorAssembler
- transform(Table...) - 类 中的方法org.apache.flink.ml.feature.vectorindexer.VectorIndexerModel
- transform(Table...) - 类 中的方法org.apache.flink.ml.feature.vectorslicer.VectorSlicer
- transform(Table...) - 类 中的方法org.apache.flink.ml.recommendation.swing.Swing
- transform(Table...) - 类 中的方法org.apache.flink.ml.regression.linearregression.LinearRegressionModel
- transform(Table...) - 类 中的方法org.apache.flink.ml.stats.anovatest.ANOVATest
- transform(Table...) - 类 中的方法org.apache.flink.ml.stats.chisqtest.ChiSqTest
- transform(Table...) - 类 中的方法org.apache.flink.ml.stats.fvaluetest.FValueTest
- TYPE_INFO - 类 中的静态变量org.apache.flink.ml.classification.naivebayes.NaiveBayesModelData
- TYPE_INFO - 类 中的静态变量org.apache.flink.ml.feature.imputer.ImputerModelData
- TYPE_INFO - 类 中的静态变量org.apache.flink.ml.feature.vectorindexer.VectorIndexerModelData
U
- UNIFORM - 接口 中的静态变量org.apache.flink.ml.feature.kbinsdiscretizer.KBinsDiscretizerParams
- UnivariateFeatureSelector - org.apache.flink.ml.feature.univariatefeatureselector中的类
-
An Estimator which selects features based on univariate statistical tests against labels.
- UnivariateFeatureSelector() - 类 的构造器org.apache.flink.ml.feature.univariatefeatureselector.UnivariateFeatureSelector
- UnivariateFeatureSelectorModel - org.apache.flink.ml.feature.univariatefeatureselector中的类
-
A Model which transforms data using the model data computed by
UnivariateFeatureSelector. - UnivariateFeatureSelectorModel() - 类 的构造器org.apache.flink.ml.feature.univariatefeatureselector.UnivariateFeatureSelectorModel
- UnivariateFeatureSelectorModelData - org.apache.flink.ml.feature.univariatefeatureselector中的类
-
Model data of
UnivariateFeatureSelectorModel. - UnivariateFeatureSelectorModelData() - 类 的构造器org.apache.flink.ml.feature.univariatefeatureselector.UnivariateFeatureSelectorModelData
- UnivariateFeatureSelectorModelData(int[]) - 类 的构造器org.apache.flink.ml.feature.univariatefeatureselector.UnivariateFeatureSelectorModelData
- UnivariateFeatureSelectorModelData.ModelDataDecoder - org.apache.flink.ml.feature.univariatefeatureselector中的类
-
Decoder for
UnivariateFeatureSelectorModelData. - UnivariateFeatureSelectorModelData.ModelDataEncoder - org.apache.flink.ml.feature.univariatefeatureselector中的类
-
Encoder for
UnivariateFeatureSelectorModelData. - UnivariateFeatureSelectorModelParams<T> - org.apache.flink.ml.feature.univariatefeatureselector中的接口
-
Params for
UnivariateFeatureSelectorModel. - UnivariateFeatureSelectorParams<T> - org.apache.flink.ml.feature.univariatefeatureselector中的接口
-
Params for
UnivariateFeatureSelector. - UPPER - 接口 中的静态变量org.apache.flink.ml.feature.robustscaler.RobustScalerParams
- USER_COL - 接口 中的静态变量org.apache.flink.ml.recommendation.swing.SwingParams
V
- validate(Double[][]) - 类 中的方法org.apache.flink.ml.feature.bucketizer.BucketizerParams.SplitsArrayValidator
- validate(String) - 类 中的方法org.apache.flink.ml.feature.sqltransformer.SQLTransformerParams.SQLStatementValidator
- value - 类 中的变量org.apache.flink.ml.common.util.QuantileSummary.StatsTuple
- VARIANCE_THRESHOLD - 接口 中的静态变量org.apache.flink.ml.feature.variancethresholdselector.VarianceThresholdSelectorParams
- VarianceThresholdSelector - org.apache.flink.ml.feature.variancethresholdselector中的类
-
An Estimator which implements the VarianceThresholdSelector algorithm.
- VarianceThresholdSelector() - 类 的构造器org.apache.flink.ml.feature.variancethresholdselector.VarianceThresholdSelector
- VarianceThresholdSelectorModel - org.apache.flink.ml.feature.variancethresholdselector中的类
-
A Model which removes low-variance data using the model data computed by
VarianceThresholdSelector. - VarianceThresholdSelectorModel() - 类 的构造器org.apache.flink.ml.feature.variancethresholdselector.VarianceThresholdSelectorModel
- VarianceThresholdSelectorModelData - org.apache.flink.ml.feature.variancethresholdselector中的类
-
Model data of
VarianceThresholdSelectorModel. - VarianceThresholdSelectorModelData() - 类 的构造器org.apache.flink.ml.feature.variancethresholdselector.VarianceThresholdSelectorModelData
- VarianceThresholdSelectorModelData(int, int[]) - 类 的构造器org.apache.flink.ml.feature.variancethresholdselector.VarianceThresholdSelectorModelData
- VarianceThresholdSelectorModelData.ModelDataDecoder - org.apache.flink.ml.feature.variancethresholdselector中的类
-
Decoder for
VarianceThresholdSelectorModelData. - VarianceThresholdSelectorModelData.ModelDataEncoder - org.apache.flink.ml.feature.variancethresholdselector中的类
-
Encoder for
VarianceThresholdSelectorModelData. - VarianceThresholdSelectorModelParams<T> - org.apache.flink.ml.feature.variancethresholdselector中的接口
-
Params for
VarianceThresholdSelectorModel. - VarianceThresholdSelectorParams<T> - org.apache.flink.ml.feature.variancethresholdselector中的接口
-
Params of VarianceThresholdSelectorModel.
- VectorAssembler - org.apache.flink.ml.feature.vectorassembler中的类
-
A Transformer which combines a given list of input columns into a vector column.
- VectorAssembler() - 类 的构造器org.apache.flink.ml.feature.vectorassembler.VectorAssembler
- VectorAssemblerParams<T> - org.apache.flink.ml.feature.vectorassembler中的接口
-
Params of
VectorAssembler. - VectorIndexer - org.apache.flink.ml.feature.vectorindexer中的类
-
An Estimator which implements the vector indexing algorithm.
- VectorIndexer() - 类 的构造器org.apache.flink.ml.feature.vectorindexer.VectorIndexer
- VectorIndexerModel - org.apache.flink.ml.feature.vectorindexer中的类
-
A Model which encodes input vector to an output vector using the model data computed by
VectorIndexer. - VectorIndexerModel() - 类 的构造器org.apache.flink.ml.feature.vectorindexer.VectorIndexerModel
- VectorIndexerModelData - org.apache.flink.ml.feature.vectorindexer中的类
-
Model data of
VectorIndexerModel. - VectorIndexerModelData() - 类 的构造器org.apache.flink.ml.feature.vectorindexer.VectorIndexerModelData
- VectorIndexerModelData(Map<Integer, Map<Double, Integer>>) - 类 的构造器org.apache.flink.ml.feature.vectorindexer.VectorIndexerModelData
- VectorIndexerModelData.ModelDataDecoder - org.apache.flink.ml.feature.vectorindexer中的类
-
Data decoder for
VectorIndexerModel. - VectorIndexerModelData.ModelDataEncoder - org.apache.flink.ml.feature.vectorindexer中的类
-
Data encoder for
VectorIndexerModel. - VectorIndexerModelParams<T> - org.apache.flink.ml.feature.vectorindexer中的接口
-
Params for
VectorIndexerModel. - VectorIndexerParams<T> - org.apache.flink.ml.feature.vectorindexer中的接口
-
Params of
VectorIndexer. - VectorSlicer - org.apache.flink.ml.feature.vectorslicer中的类
-
A Transformer that transforms a vector to a new feature, which is a sub-array of the original feature.
- VectorSlicer() - 类 的构造器org.apache.flink.ml.feature.vectorslicer.VectorSlicer
- VectorSlicerParams<T> - org.apache.flink.ml.feature.vectorslicer中的接口
-
Params of
VectorSlicer. - vectorToArray(Object...) - 类 中的静态方法org.apache.flink.ml.Functions
-
Converts a column of
Vectors into a column of double arrays. - VectorToArrayFunction() - 类 的构造器org.apache.flink.ml.Functions.VectorToArrayFunction
- VectorUtils - org.apache.flink.ml.common.util中的类
-
Provides utility functions for
Vector. - VectorUtils() - 类 的构造器org.apache.flink.ml.common.util.VectorUtils
- version - 类 中的变量org.apache.flink.ml.feature.standardscaler.StandardScalerModelData
-
Model version.
- vocabulary - 类 中的变量org.apache.flink.ml.feature.countvectorizer.CountVectorizerModelData
-
The array over terms, only the terms in the vocabulary will be counted.
- VOCABULARY_SIZE - 接口 中的静态变量org.apache.flink.ml.feature.countvectorizer.CountVectorizerParams
W
- weights - 类 中的变量org.apache.flink.ml.clustering.kmeans.KMeansModelData
-
The weight of the centroids.
- WEIGHTS - 接口 中的静态变量org.apache.flink.ml.feature.randomsplitter.RandomSplitterParams
-
Weights should be a non-empty array with all elements greater than zero.
- weightsValidator() - 接口 中的静态方法org.apache.flink.ml.feature.randomsplitter.RandomSplitterParams
- WINDOWS - 接口 中的静态变量org.apache.flink.ml.common.param.HasWindows
- WITH_CENTERING - 接口 中的静态变量org.apache.flink.ml.feature.robustscaler.RobustScalerModelParams
- WITH_MEAN - 接口 中的静态变量org.apache.flink.ml.feature.standardscaler.StandardScalerParams
- WITH_SCALING - 接口 中的静态变量org.apache.flink.ml.feature.robustscaler.RobustScalerModelParams
- WITH_STD - 接口 中的静态变量org.apache.flink.ml.feature.standardscaler.StandardScalerParams
所有类 所有程序包