所有类 接口概要 类概要
| 类 |
说明 |
| AgglomerativeClustering |
An AlgoOperator that performs a hierarchical clustering using a bottom-up approach.
|
| AgglomerativeClusteringParams<T> |
|
| ANOVATest |
An AlgoOperator which implements the ANOVA test algorithm.
|
| ANOVATestParams<T> |
|
| Binarizer |
A Transformer that binarizes the columns of continuous features by the given thresholds.
|
| BinarizerParams<T> |
|
| BinaryClassificationEvaluator |
An AlgoOperator which calculates the evaluation metrics for binary classification.
|
| BinaryClassificationEvaluator.BinaryMetrics |
The evaluation metrics for binary classification.
|
| BinaryClassificationEvaluator.BinarySummary |
Binary Summary of data in one worker.
|
| BinaryClassificationEvaluatorParams<T> |
Params of BinaryClassificationEvaluator.
|
| BinaryLogisticLoss |
The loss function for binary logistic loss.
|
| Bucketizer |
A Transformer that maps multiple columns of continuous features to multiple columns of discrete
features, i.e., buckets indices.
|
| BucketizerParams<T> |
|
| BucketizerParams.SplitsArrayValidator |
Param validator for splitsArray.
|
| ChiSqTest |
An AlgoOperator which implements the Chi-square test algorithm.
|
| ChiSqTestParams<T> |
|
| CountVectorizer |
An Estimator which converts a collection of text documents to vectors of token counts.
|
| CountVectorizerModel |
A Model which transforms data using the model data computed by CountVectorizer.
|
| CountVectorizerModelData |
|
| CountVectorizerModelData.ModelDataDecoder |
|
| CountVectorizerModelData.ModelDataEncoder |
|
| CountVectorizerModelParams<T> |
|
| CountVectorizerParams<T> |
|
| DCT |
A Transformer that takes the 1D discrete cosine transform of a real vector.
|
| DCTParams<T> |
|
| ElementwiseProduct |
A Transformer that multiplies each input vector with a given scaling vector using Hadamard
product.
|
| ElementwiseProductParams<T> |
|
| FeatureHasher |
A Transformer that transforms a set of categorical or numerical features into a sparse vector of
a specified dimension.
|
| FeatureHasherParams<T> |
|
| Functions |
Built-in table functions for data transformations.
|
| Functions.ArrayToVectorFunction |
A ScalarFunction that converts a column of arrays of numeric type into a column of
DenseVector instances.
|
| Functions.VectorToArrayFunction |
A ScalarFunction that converts a column of Vectors into a column of double
arrays.
|
| FValueTest |
An AlgoOperator which implements the F-value test algorithm.
|
| FValueTestParams<T> |
|
| HashingTF |
A Transformer that maps a sequence of terms(strings, numbers, booleans) to a sparse vector with a
specified dimension using the hashing trick.
|
| HashingTF.HashTFFunction |
The main logic of HashingTF, which converts the input to a sparse vector.
|
| HashingTFParams<T> |
|
| HasWindows<T> |
Interface for the shared windows param.
|
| HingeLoss |
The loss function for hinge loss.
|
| IDF |
An Estimator that computes the inverse document frequency (IDF) for the input documents.
|
| IDFModel |
A Model which transforms data using the model data computed by IDF.
|
| IDFModelData |
|
| IDFModelData.ModelDataDecoder |
|
| IDFModelData.ModelDataEncoder |
|
| IDFModelParams<T> |
|
| IDFParams<T> |
|
| Imputer |
The imputer for completing missing values of the input columns.
|
| ImputerModel |
A Model which replaces the missing values using the model data computed by Imputer.
|
| ImputerModelData |
|
| ImputerModelData.ModelDataDecoder |
|
| ImputerModelData.ModelDataEncoder |
|
| ImputerModelParams<T> |
|
| ImputerParams<T> |
|
| IndexToStringModel |
A Model which transforms input index column(s) to string column(s) using the model data computed
by StringIndexer.
|
| IndexToStringModelParams<T> |
|
| Interaction |
A Transformer that takes vector or numerical columns, and generates a single vector column that
contains the product of all combinations of one value from each input column.
|
| InteractionParams<T> |
|
| KBinsDiscretizer |
An Estimator which implements discretization (also known as quantization or binning) to transform
continuous features into discrete ones.
|
| KBinsDiscretizerModel |
A Model which transforms continuous features into discrete features using the model data computed
by KBinsDiscretizer.
|
| KBinsDiscretizerModelData |
|
| KBinsDiscretizerModelData.ModelDataDecoder |
|
| KBinsDiscretizerModelData.ModelDataEncoder |
|
| KBinsDiscretizerModelParams<T> |
|
| KBinsDiscretizerParams<T> |
|
| KMeans |
An Estimator which implements the k-means clustering algorithm.
|
| KMeansModel |
A Model which clusters data into k clusters using the model data computed by KMeans.
|
| KMeansModelData |
|
| KMeansModelData.ModelDataDecoder |
|
| KMeansModelData.ModelDataEncoder |
|
| KMeansModelParams<T> |
|
| KMeansParams<T> |
|
| Knn |
An Estimator which implements the KNN algorithm.
|
| KnnModel |
A Model which classifies data using the model data computed by Knn.
|
| KnnModelData |
|
| KnnModelData.ModelDataDecoder |
|
| KnnModelData.ModelDataEncoder |
|
| KnnModelParams<T> |
|
| KnnParams<T> |
|
| LeastSquareLoss |
The loss function for least square loss.
|
| LinearRegression |
An Estimator which implements the linear regression algorithm.
|
| LinearRegressionModel |
|
| LinearRegressionModelData |
|
| LinearRegressionModelData.ModelDataDecoder |
|
| LinearRegressionModelData.ModelDataEncoder |
|
| LinearRegressionModelParams<T> |
|
| LinearRegressionParams<T> |
|
| LinearSVC |
An Estimator which implements the linear support vector classification.
|
| LinearSVCModel |
A Model which classifies data using the model data computed by LinearSVC.
|
| LinearSVCModelData |
|
| LinearSVCModelData.ModelDataDecoder |
|
| LinearSVCModelData.ModelDataEncoder |
|
| LinearSVCModelParams<T> |
|
| LinearSVCParams<T> |
|
| LogisticRegression |
An Estimator which implements the logistic regression algorithm.
|
| LogisticRegressionModel |
|
| LogisticRegressionModelDataUtil |
The utility class which provides methods to convert model data from Table to Datastream, and
classes to save/load model data.
|
| LogisticRegressionModelDataUtil.ModelDataDecoder |
|
| LogisticRegressionModelDataUtil.ModelDataEncoder |
|
| LogisticRegressionParams<T> |
|
| LossFunc |
A loss function is to compute the loss and gradient with the given coefficient and training data.
|
| LSHModelParams<T> |
Params for LSHModel.
|
| LSHParams<T> |
Params for LSH.
|
| MaxAbsScaler |
An Estimator which implements the MaxAbsScaler algorithm.
|
| MaxAbsScalerModel |
A Model which transforms data using the model data computed by MaxAbsScaler.
|
| MaxAbsScalerModelData |
|
| MaxAbsScalerModelData.ModelDataDecoder |
|
| MaxAbsScalerModelData.ModelDataEncoder |
|
| MaxAbsScalerParams<T> |
|
| MinHashLSH |
An Estimator that implements the MinHash LSH algorithm, which supports LSH for Jaccard distance.
|
| MinHashLSHModel |
A Model which generates hash values using the model data computed by MinHashLSH.
|
| MinHashLSHModelData |
|
| MinHashLSHModelData.ModelDataEncoder |
|
| MinHashLSHParams<T> |
|
| MinMaxScaler |
An Estimator which implements the MinMaxScaler algorithm.
|
| MinMaxScaler.MinMaxReduceFunctionOperator |
A stream operator to compute the min and max values in each partition of the input bounded
data stream.
|
| MinMaxScalerModel |
A Model which transforms data using the model data computed by MinMaxScaler.
|
| MinMaxScalerModelData |
|
| MinMaxScalerModelData.ModelDataDecoder |
|
| MinMaxScalerModelData.ModelDataEncoder |
|
| MinMaxScalerParams<T> |
|
| NaiveBayes |
An Estimator which implements the naive bayes classification algorithm.
|
| NaiveBayesModel |
A Model which classifies data using the model data computed by NaiveBayes.
|
| NaiveBayesModelData |
|
| NaiveBayesModelData.ModelDataDecoder |
|
| NaiveBayesModelData.ModelDataEncoder |
|
| NaiveBayesModelParams<T> |
|
| NaiveBayesParams<T> |
|
| NGram |
A Transformer that converts the input string array into an array of n-grams, where each n-gram is
represented by a space-separated string of words.
|
| NGram.NGramUdf |
The main logic of NGram, which converts the input string array to an array of
n-grams.
|
| NGramParams<T> |
|
| Normalizer |
A Transformer that normalizes a vector to have unit norm using the given p-norm.
|
| NormalizerParams<T> |
|
| OneHotEncoder |
An Estimator which implements the one-hot encoding algorithm.
|
| OneHotEncoderModel |
A Model which encodes data into one-hot format using the model data computed by OneHotEncoder.
|
| OneHotEncoderModelData |
|
| OneHotEncoderModelData.ModelDataEncoder |
Data encoder for the OneHotEncoder model data.
|
| OneHotEncoderModelData.ModelDataStreamFormat |
Data decoder for the OneHotEncoder model data.
|
| OneHotEncoderParams<T> |
Params of OneHotEncoderModel.
|
| OnlineKMeans |
OnlineKMeans extends the function of KMeans, supporting to train a K-Means model
continuously according to an unbounded stream of train data.
|
| OnlineKMeansModel |
OnlineKMeansModel can be regarded as an advanced KMeansModel operator which can update
model data in a streaming format, using the model data provided by OnlineKMeans.
|
| OnlineKMeansParams<T> |
|
| OnlineLogisticRegression |
An Estimator which implements the online logistic regression algorithm.
|
| OnlineLogisticRegressionModel |
|
| OnlineLogisticRegressionModelParams<T> |
|
| OnlineLogisticRegressionParams<T> |
|
| OnlineStandardScaler |
An Estimator which implements the online standard scaling algorithm, which is the online version
of StandardScaler.
|
| OnlineStandardScalerModel |
|
| OnlineStandardScalerModelParams<T> |
|
| OnlineStandardScalerParams<T> |
|
| Optimizer |
An optimizer is a function to modify the weight of a machine learning model, which aims to find
the optimal parameter configuration for a machine learning model.
|
| PolynomialExpansion |
A Transformer that expands the input vectors in polynomial space.
|
| PolynomialExpansionParams<T> |
|
| PriorityQueueSerializer<T> |
|
| PriorityQueueTypeInfo<T> |
|
| QuantileSummary |
Helper class to compute an approximate quantile summary.
|
| QuantileSummary.StatsTuple |
Wrapper class to hold all statistics from the Greenwald-Khanna paper.
|
| QuantileSummaryTypeInfoFactory |
Used by TypeExtractor to create a TypeInformation for implementations of QuantileSummary.
|
| RandomSplitter |
An AlgoOperator which splits a Table into N Tables according to the given weights.
|
| RandomSplitterParams<T> |
|
| RegexTokenizer |
A Transformer which converts the input string to lowercase and then splits it by white spaces
based on regex.
|
| RegexTokenizer.RegexTokenizerUdf |
The main logic of $ RegexTokenizer, which converts the input string to an array of
tokens.
|
| RegexTokenizerParams<T> |
|
| RobustScaler |
An Estimator which scales features using statistics that are robust to outliers.
|
| RobustScalerModel |
A Model which transforms data using the model data computed by RobustScaler.
|
| RobustScalerModelData |
|
| RobustScalerModelData.ModelDataDecoder |
|
| RobustScalerModelData.ModelDataEncoder |
|
| RobustScalerModelParams<T> |
|
| RobustScalerParams<T> |
|
| SGD |
Stochastic Gradient Descent (SGD) is the mostly wide-used optimizer for optimizing machine
learning models.
|
| SQLTransformer |
SQLTransformer implements the transformations that are defined by SQL statement.
|
| SQLTransformerParams<T> |
|
| SQLTransformerParams.SQLStatementValidator |
Param validator for SQL statements.
|
| StandardScaler |
An Estimator which implements the standard scaling algorithm.
|
| StandardScalerModel |
A Model which transforms data using the model data computed by StandardScaler.
|
| StandardScalerModelData |
|
| StandardScalerModelData.ModelDataDecoder |
|
| StandardScalerModelData.ModelDataEncoder |
|
| StandardScalerParams<T> |
|
| StopWordsRemover |
A feature transformer that filters out stop words from input.
|
| StopWordsRemover.RemoveStopWordsFunction |
A Scalar Function that removes stop words from input string array.
|
| StopWordsRemoverParams<T> |
|
| StringIndexer |
An Estimator which implements the string indexing algorithm.
|
| StringIndexerModel |
A Model which transforms input string/numeric column(s) to double column(s) using the model data
computed by StringIndexer.
|
| StringIndexerModelData |
|
| StringIndexerModelData.ModelDataDecoder |
|
| StringIndexerModelData.ModelDataEncoder |
|
| StringIndexerModelParams<T> |
|
| StringIndexerParams<T> |
|
| Swing |
An AlgoOperator which implements the Swing algorithm.
|
| SwingParams<T> |
|
| Tokenizer |
A Transformer which converts the input string to lowercase and then splits it by white spaces.
|
| Tokenizer.TokenizerUdf |
The main logic of Tokenizer, which converts the input string to an array of tokens.
|
| TokenizerParams<T> |
|
| UnivariateFeatureSelector |
An Estimator which selects features based on univariate statistical tests against labels.
|
| UnivariateFeatureSelectorModel |
|
| UnivariateFeatureSelectorModelData |
|
| UnivariateFeatureSelectorModelData.ModelDataDecoder |
|
| UnivariateFeatureSelectorModelData.ModelDataEncoder |
|
| UnivariateFeatureSelectorModelParams<T> |
|
| UnivariateFeatureSelectorParams<T> |
|
| VarianceThresholdSelector |
An Estimator which implements the VarianceThresholdSelector algorithm.
|
| VarianceThresholdSelectorModel |
|
| VarianceThresholdSelectorModelData |
|
| VarianceThresholdSelectorModelData.ModelDataDecoder |
|
| VarianceThresholdSelectorModelData.ModelDataEncoder |
|
| VarianceThresholdSelectorModelParams<T> |
|
| VarianceThresholdSelectorParams<T> |
Params of VarianceThresholdSelectorModel.
|
| VectorAssembler |
A Transformer which combines a given list of input columns into a vector column.
|
| VectorAssemblerParams<T> |
|
| VectorIndexer |
An Estimator which implements the vector indexing algorithm.
|
| VectorIndexerModel |
A Model which encodes input vector to an output vector using the model data computed by VectorIndexer.
|
| VectorIndexerModelData |
|
| VectorIndexerModelData.ModelDataDecoder |
|
| VectorIndexerModelData.ModelDataEncoder |
|
| VectorIndexerModelParams<T> |
|
| VectorIndexerParams<T> |
|
| VectorSlicer |
A Transformer that transforms a vector to a new feature, which is a sub-array of the original
feature.
|
| VectorSlicerParams<T> |
|
| VectorUtils |
Provides utility functions for Vector.
|