case class FlatMapGroupsInPandasWithStateExec(functionExpr: Expression, groupingAttributes: Seq[Attribute], outAttributes: Seq[Attribute], stateType: StructType, stateInfo: Option[StatefulOperatorStateInfo], stateFormatVersion: Int, outputMode: OutputMode, timeoutConf: GroupStateTimeout, batchTimestampMs: Option[Long], eventTimeWatermarkForLateEvents: Option[Long], eventTimeWatermarkForEviction: Option[Long], child: SparkPlan) extends SparkPlan with UnaryExecNode with FlatMapGroupsWithStateExecBase with Product with Serializable
Physical operator for executing org.apache.spark.sql.catalyst.plans.logical.FlatMapGroupsInPandasWithState
- functionExpr
function called on each group
- groupingAttributes
used to group the data
- outAttributes
used to define the output rows
- stateType
used to serialize/deserialize state before calling
functionExpr
- stateInfo
StatefulOperatorStateInfo
to identify the state store for a given operator.- stateFormatVersion
the version of state format.
- outputMode
the output mode of
functionExpr
- timeoutConf
used to timeout groups that have not received data in a while
- batchTimestampMs
processing timestamp of the current batch.
- eventTimeWatermarkForLateEvents
event time watermark for filtering late events
- eventTimeWatermarkForEviction
event time watermark for state eviction
- child
logical plan of the underlying data
- Alphabetic
- By Inheritance
- FlatMapGroupsInPandasWithStateExec
- FlatMapGroupsWithStateExecBase
- WatermarkSupport
- StateStoreWriter
- PythonSQLMetrics
- StatefulOperator
- UnaryExecNode
- UnaryLike
- SparkPlan
- Serializable
- Serializable
- Logging
- QueryPlan
- SQLConfHelper
- TreeNode
- TreePatternBits
- Product
- Equals
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
-
new
FlatMapGroupsInPandasWithStateExec(functionExpr: Expression, groupingAttributes: Seq[Attribute], outAttributes: Seq[Attribute], stateType: StructType, stateInfo: Option[StatefulOperatorStateInfo], stateFormatVersion: Int, outputMode: OutputMode, timeoutConf: GroupStateTimeout, batchTimestampMs: Option[Long], eventTimeWatermarkForLateEvents: Option[Long], eventTimeWatermarkForEviction: Option[Long], child: SparkPlan)
- functionExpr
function called on each group
- groupingAttributes
used to group the data
- outAttributes
used to define the output rows
- stateType
used to serialize/deserialize state before calling
functionExpr
- stateInfo
StatefulOperatorStateInfo
to identify the state store for a given operator.- stateFormatVersion
the version of state format.
- outputMode
the output mode of
functionExpr
- timeoutConf
used to timeout groups that have not received data in a while
- batchTimestampMs
processing timestamp of the current batch.
- eventTimeWatermarkForLateEvents
event time watermark for filtering late events
- eventTimeWatermarkForEviction
event time watermark for state eviction
- child
logical plan of the underlying data
Type Members
-
abstract
class
InputProcessor extends AnyRef
- Definition Classes
- FlatMapGroupsWithStateExecBase
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
lazy val
allAttributes: AttributeSeq
- Definition Classes
- QueryPlan
-
def
apply(number: Int): TreeNode[_]
- Definition Classes
- TreeNode
-
def
applyRemovingRowsOlderThanWatermark(iter: Iterator[InternalRow], predicateDropRowByWatermark: BasePredicate): Iterator[InternalRow]
- Attributes
- protected
- Definition Classes
- StateStoreWriter
-
def
argString(maxFields: Int): String
- Definition Classes
- TreeNode
-
def
asCode: String
- Definition Classes
- TreeNode
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
val
batchTimestampMs: Option[Long]
- Definition Classes
- FlatMapGroupsInPandasWithStateExec → FlatMapGroupsWithStateExecBase
-
final
lazy val
canonicalized: SparkPlan
- Definition Classes
- QueryPlan
- Annotations
- @transient()
-
val
child: SparkPlan
- Definition Classes
- FlatMapGroupsInPandasWithStateExec → WatermarkSupport → UnaryLike
-
final
lazy val
children: Seq[SparkPlan]
- Definition Classes
- UnaryLike
- Annotations
- @transient()
-
def
cleanupResources(): Unit
Cleans up the resources used by the physical operator (if any).
Cleans up the resources used by the physical operator (if any). In general, all the resources should be cleaned up when the task finishes but operators like SortMergeJoinExec and LimitExec may want eager cleanup to free up tight resources (e.g., memory).
-
def
clone(): SparkPlan
- Definition Classes
- TreeNode → AnyRef
-
def
collect[B](pf: PartialFunction[SparkPlan, B]): Seq[B]
- Definition Classes
- TreeNode
-
def
collectFirst[B](pf: PartialFunction[SparkPlan, B]): Option[B]
- Definition Classes
- TreeNode
-
def
collectLeaves(): Seq[SparkPlan]
- Definition Classes
- TreeNode
-
def
collectWithSubqueries[B](f: PartialFunction[SparkPlan, B]): Seq[B]
- Definition Classes
- QueryPlan
-
def
conf: SQLConf
- Definition Classes
- SparkPlan → SQLConfHelper
-
final
def
containsAllPatterns(patterns: TreePattern*): Boolean
- Definition Classes
- TreePatternBits
-
final
def
containsAnyPattern(patterns: TreePattern*): Boolean
- Definition Classes
- TreePatternBits
-
lazy val
containsChild: Set[TreeNode[_]]
- Definition Classes
- TreeNode
-
final
def
containsPattern(t: TreePattern): Boolean
- Definition Classes
- TreePatternBits
- Annotations
- @inline()
-
def
copyTagsFrom(other: SparkPlan): Unit
- Definition Classes
- TreeNode
-
def
createInputProcessor(store: StateStore): InputProcessor
- Definition Classes
- FlatMapGroupsInPandasWithStateExec → FlatMapGroupsWithStateExecBase
-
def
customStatefulOperatorMetrics: Seq[StatefulOperatorCustomMetric]
Set of stateful operator custom metrics.
Set of stateful operator custom metrics. These are captured as part of the generic key-value map StateOperatorProgress.customMetrics. Stateful operators can extend this method to provide their own unique custom metrics.
- Attributes
- protected
- Definition Classes
- StateStoreWriter
-
lazy val
deterministic: Boolean
- Definition Classes
- QueryPlan
-
def
doCanonicalize(): SparkPlan
- Attributes
- protected
- Definition Classes
- QueryPlan
-
def
doExecute(): RDD[InternalRow]
Produces the result of the query as an
RDD[InternalRow]
Produces the result of the query as an
RDD[InternalRow]
Overridden by concrete implementations of SparkPlan.
- Attributes
- protected
- Definition Classes
- FlatMapGroupsWithStateExecBase → SparkPlan
-
def
doExecuteBroadcast[T](): Broadcast[T]
Produces the result of the query as a broadcast variable.
-
def
doExecuteColumnar(): RDD[ColumnarBatch]
Produces the result of the query as an
RDD[ColumnarBatch]
if supportsColumnar returns true.Produces the result of the query as an
RDD[ColumnarBatch]
if supportsColumnar returns true. By convention the executor that creates a ColumnarBatch is responsible for closing it when it is no longer needed. This allows input formats to be able to reuse batches if needed.- Attributes
- protected
- Definition Classes
- SparkPlan
-
def
doExecuteWrite(writeFilesSpec: WriteFilesSpec): RDD[WriterCommitMessage]
Produces the result of the writes as an
RDD[WriterCommitMessage]
Produces the result of the writes as an
RDD[WriterCommitMessage]
Overridden by concrete implementations of SparkPlan.
- Attributes
- protected
- Definition Classes
- SparkPlan
-
def
doPrepare(): Unit
Overridden by concrete implementations of SparkPlan.
Overridden by concrete implementations of SparkPlan. It is guaranteed to run before any
execute
of SparkPlan. This is helpful if we want to set up some state before executing the query, e.g.,BroadcastHashJoin
uses it to broadcast asynchronously.- Attributes
- protected
- Definition Classes
- SparkPlan
- Note
prepare
method has already walked down the tree, so the implementation doesn't have to call children'sprepare
methods. This will only be called once, protected bythis
.
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
val
eventTimeWatermarkForEviction: Option[Long]
The watermark value for closing aggregates and evicting state.
The watermark value for closing aggregates and evicting state. It is different from the late events filtering watermark (consider chained aggregators agg1 -> agg2: agg1 evicts state which will be effectively late against the eviction watermark but should not be late for agg2 input late record filtering watermark. Thus agg1 and agg2 use the current batch watermark for state eviction but the previous batch watermark for late record filtering.
- Definition Classes
- FlatMapGroupsInPandasWithStateExec → FlatMapGroupsWithStateExecBase → WatermarkSupport
-
val
eventTimeWatermarkForLateEvents: Option[Long]
The watermark value for filtering late events/records.
The watermark value for filtering late events/records. This should be the previous batch state eviction watermark.
- Definition Classes
- FlatMapGroupsInPandasWithStateExec → FlatMapGroupsWithStateExecBase → WatermarkSupport
-
final
def
execute(): RDD[InternalRow]
Returns the result of this query as an RDD[InternalRow] by delegating to
doExecute
after preparations.Returns the result of this query as an RDD[InternalRow] by delegating to
doExecute
after preparations.Concrete implementations of SparkPlan should override
doExecute
.- Definition Classes
- SparkPlan
-
final
def
executeBroadcast[T](): Broadcast[T]
Returns the result of this query as a broadcast variable by delegating to
doExecuteBroadcast
after preparations.Returns the result of this query as a broadcast variable by delegating to
doExecuteBroadcast
after preparations.Concrete implementations of SparkPlan should override
doExecuteBroadcast
.- Definition Classes
- SparkPlan
-
def
executeCollect(): Array[InternalRow]
Runs this query returning the result as an array.
Runs this query returning the result as an array.
- Definition Classes
- SparkPlan
-
def
executeCollectPublic(): Array[Row]
Runs this query returning the result as an array, using external Row format.
Runs this query returning the result as an array, using external Row format.
- Definition Classes
- SparkPlan
-
final
def
executeColumnar(): RDD[ColumnarBatch]
Returns the result of this query as an RDD[ColumnarBatch] by delegating to
doColumnarExecute
after preparations.Returns the result of this query as an RDD[ColumnarBatch] by delegating to
doColumnarExecute
after preparations.Concrete implementations of SparkPlan should override
doColumnarExecute
ifsupportsColumnar
returns true.- Definition Classes
- SparkPlan
-
final
def
executeQuery[T](query: ⇒ T): T
Executes a query after preparing the query and adding query plan information to created RDDs for visualization.
Executes a query after preparing the query and adding query plan information to created RDDs for visualization.
- Attributes
- protected
- Definition Classes
- SparkPlan
-
def
executeTail(n: Int): Array[InternalRow]
Runs this query returning the last
n
rows as an array.Runs this query returning the last
n
rows as an array.This is modeled after
RDD.take
but never runs any job locally on the driver.- Definition Classes
- SparkPlan
-
def
executeTake(n: Int): Array[InternalRow]
Runs this query returning the first
n
rows as an array.Runs this query returning the first
n
rows as an array.This is modeled after
RDD.take
but never runs any job locally on the driver.- Definition Classes
- SparkPlan
-
def
executeToIterator(): Iterator[InternalRow]
Runs this query returning the result as an iterator of InternalRow.
Runs this query returning the result as an iterator of InternalRow.
- Definition Classes
- SparkPlan
- Note
Triggers multiple jobs (one for each partition).
-
def
executeWrite(writeFilesSpec: WriteFilesSpec): RDD[WriterCommitMessage]
Returns the result of writes as an RDD[WriterCommitMessage] variable by delegating to
doExecuteWrite
after preparations.Returns the result of writes as an RDD[WriterCommitMessage] variable by delegating to
doExecuteWrite
after preparations.Concrete implementations of SparkPlan should override
doExecuteWrite
.- Definition Classes
- SparkPlan
-
def
exists(f: (SparkPlan) ⇒ Boolean): Boolean
- Definition Classes
- TreeNode
-
final
def
expressions: Seq[Expression]
- Definition Classes
- QueryPlan
-
def
fastEquals(other: TreeNode[_]): Boolean
- Definition Classes
- TreeNode
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
def
find(f: (SparkPlan) ⇒ Boolean): Option[SparkPlan]
- Definition Classes
- TreeNode
-
def
flatMap[A](f: (SparkPlan) ⇒ TraversableOnce[A]): Seq[A]
- Definition Classes
- TreeNode
-
def
foreach(f: (SparkPlan) ⇒ Unit): Unit
- Definition Classes
- TreeNode
-
def
foreachUp(f: (SparkPlan) ⇒ Unit): Unit
- Definition Classes
- TreeNode
-
def
formattedNodeName: String
- Attributes
- protected
- Definition Classes
- QueryPlan
- val functionExpr: Expression
-
def
generateTreeString(depth: Int, lastChildren: Seq[Boolean], append: (String) ⇒ Unit, verbose: Boolean, prefix: String, addSuffix: Boolean, maxFields: Int, printNodeId: Boolean, indent: Int): Unit
- Definition Classes
- TreeNode
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
getDefaultTreePatternBits: BitSet
- Attributes
- protected
- Definition Classes
- TreeNode
-
def
getProgress(): StateOperatorProgress
Get the progress made by this stateful operator after execution.
Get the progress made by this stateful operator after execution. This should be called in the driver after this SparkPlan has been executed and metrics have been updated.
- Definition Classes
- StateStoreWriter
-
def
getStateInfo: StatefulOperatorStateInfo
- Attributes
- protected
- Definition Classes
- StatefulOperator
-
def
getTagValue[T](tag: TreeNodeTag[T]): Option[T]
- Definition Classes
- TreeNode
-
val
groupingAttributes: Seq[Attribute]
- Definition Classes
- FlatMapGroupsInPandasWithStateExec → FlatMapGroupsWithStateExecBase
-
val
hasInitialState: Boolean
- Attributes
- protected
- Definition Classes
- FlatMapGroupsInPandasWithStateExec → FlatMapGroupsWithStateExecBase
-
def
hashCode(): Int
- Definition Classes
- TreeNode → AnyRef → Any
-
val
id: Int
- Definition Classes
- SparkPlan
-
val
initialState: SparkPlan
- Attributes
- protected
- Definition Classes
- FlatMapGroupsInPandasWithStateExec → FlatMapGroupsWithStateExecBase
-
val
initialStateDataAttrs: Seq[Attribute]
- Attributes
- protected
- Definition Classes
- FlatMapGroupsInPandasWithStateExec → FlatMapGroupsWithStateExecBase
-
val
initialStateDeserializer: Expression
- Attributes
- protected
- Definition Classes
- FlatMapGroupsInPandasWithStateExec → FlatMapGroupsWithStateExecBase
-
val
initialStateGroupAttrs: Seq[Attribute]
- Attributes
- protected
- Definition Classes
- FlatMapGroupsInPandasWithStateExec → FlatMapGroupsWithStateExecBase
-
def
initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
def
initializeLogIfNecessary(isInterpreter: Boolean): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
innerChildren: Seq[QueryPlan[_]]
- Definition Classes
- QueryPlan → TreeNode
-
def
inputSet: AttributeSet
- Definition Classes
- QueryPlan
-
def
isCanonicalizedPlan: Boolean
- Attributes
- protected
- Definition Classes
- QueryPlan
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
def
isRuleIneffective(ruleId: RuleId): Boolean
- Attributes
- protected
- Definition Classes
- TreeNode
-
val
isTimeoutEnabled: Boolean
- Attributes
- protected
- Definition Classes
- FlatMapGroupsWithStateExecBase
-
def
isTraceEnabled(): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
def
jsonFields: List[JField]
- Attributes
- protected
- Definition Classes
- TreeNode
-
def
keyExpressions: Seq[Attribute]
The keys that may have a watermark attribute.
The keys that may have a watermark attribute.
- Definition Classes
- FlatMapGroupsWithStateExecBase → WatermarkSupport
-
final
def
legacyWithNewChildren(newChildren: Seq[SparkPlan]): SparkPlan
- Attributes
- protected
- Definition Classes
- TreeNode
-
def
log: Logger
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logName: String
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logicalLink: Option[LogicalPlan]
- returns
The logical plan this plan is linked to.
- Definition Classes
- SparkPlan
-
def
longMetric(name: String): SQLMetric
- returns
SQLMetric for the
name
.
- Definition Classes
- SparkPlan
-
def
makeCopy(newArgs: Array[AnyRef]): SparkPlan
Overridden make copy also propagates sqlContext to copied plan.
Overridden make copy also propagates sqlContext to copied plan.
- Definition Classes
- SparkPlan → TreeNode
-
def
map[A](f: (SparkPlan) ⇒ A): Seq[A]
- Definition Classes
- TreeNode
-
final
def
mapChildren(f: (SparkPlan) ⇒ SparkPlan): SparkPlan
- Definition Classes
- UnaryLike
-
def
mapExpressions(f: (Expression) ⇒ Expression): FlatMapGroupsInPandasWithStateExec.this.type
- Definition Classes
- QueryPlan
-
def
mapProductIterator[B](f: (Any) ⇒ B)(implicit arg0: ClassTag[B]): Array[B]
- Attributes
- protected
- Definition Classes
- TreeNode
-
def
markRuleAsIneffective(ruleId: RuleId): Unit
- Attributes
- protected
- Definition Classes
- TreeNode
-
lazy val
metrics: Map[String, SQLMetric]
- returns
All metrics containing metrics of this SparkPlan.
- Definition Classes
- StateStoreWriter → PythonSQLMetrics → SparkPlan
-
final
def
missingInput: AttributeSet
- Definition Classes
- QueryPlan
-
def
multiTransformDown(rule: PartialFunction[SparkPlan, Seq[SparkPlan]]): Stream[SparkPlan]
- Definition Classes
- TreeNode
-
def
multiTransformDownWithPruning(cond: (TreePatternBits) ⇒ Boolean, ruleId: RuleId)(rule: PartialFunction[SparkPlan, Seq[SparkPlan]]): Stream[SparkPlan]
- Definition Classes
- TreeNode
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
nodeName: String
- Definition Classes
- TreeNode
-
val
nodePatterns: Seq[TreePattern]
- Attributes
- protected
- Definition Classes
- TreeNode
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
numberedTreeString: String
- Definition Classes
- TreeNode
-
val
origin: Origin
- Definition Classes
- TreeNode
-
def
otherCopyArgs: Seq[AnyRef]
- Attributes
- protected
- Definition Classes
- TreeNode
- val outAttributes: Seq[Attribute]
-
def
output: Seq[Attribute]
- Definition Classes
- FlatMapGroupsInPandasWithStateExec → QueryPlan
-
val
outputMode: OutputMode
- Definition Classes
- FlatMapGroupsInPandasWithStateExec → FlatMapGroupsWithStateExecBase
-
def
outputOrdering: Seq[SortOrder]
- Definition Classes
- QueryPlan
-
def
outputPartitioning: Partitioning
Specifies how data is partitioned across different nodes in the cluster.
Specifies how data is partitioned across different nodes in the cluster. Note this method may fail if it is invoked before
EnsureRequirements
is applied sincePartitioningCollection
requires all its partitionings to have the same number of partitions.- Definition Classes
- SparkPlan
-
lazy val
outputSet: AttributeSet
- Definition Classes
- QueryPlan
- Annotations
- @transient()
-
def
p(number: Int): SparkPlan
- Definition Classes
- TreeNode
-
final
def
prepare(): Unit
Prepares this SparkPlan for execution.
Prepares this SparkPlan for execution. It's idempotent.
- Definition Classes
- SparkPlan
-
def
prepareSubqueries(): Unit
Finds scalar subquery expressions in this plan node and starts evaluating them.
Finds scalar subquery expressions in this plan node and starts evaluating them.
- Attributes
- protected
- Definition Classes
- SparkPlan
-
def
prettyJson: String
- Definition Classes
- TreeNode
-
def
printSchema(): Unit
- Definition Classes
- QueryPlan
-
def
processDataWithPartition(iter: Iterator[InternalRow], store: StateStore, processor: InputProcessor, initialStateIterOption: Option[Iterator[InternalRow]] = None): CompletionIterator[InternalRow, Iterator[InternalRow]]
Process data by applying the user defined function on a per partition basis.
Process data by applying the user defined function on a per partition basis.
- iter
- Iterator of the data rows
- store
- associated state store for this partition
- processor
- handle to the input processor object.
- initialStateIterOption
- optional initial state iterator
- Definition Classes
- FlatMapGroupsWithStateExecBase
-
def
producedAttributes: AttributeSet
- Definition Classes
- QueryPlan
-
val
pythonMetrics: Map[String, SQLMetric]
- Definition Classes
- PythonSQLMetrics
-
lazy val
references: AttributeSet
- Definition Classes
- QueryPlan
- Annotations
- @transient()
-
def
removeKeysOlderThanWatermark(storeManager: StreamingAggregationStateManager, store: StateStore): Unit
- Attributes
- protected
- Definition Classes
- WatermarkSupport
-
def
removeKeysOlderThanWatermark(store: StateStore): Unit
- Attributes
- protected
- Definition Classes
- WatermarkSupport
-
def
requiredChildDistribution: Seq[Distribution]
Distribute by grouping attributes - We need the underlying data and the initial state data to have the same grouping so that the data are co-lacated on the same task.
Distribute by grouping attributes - We need the underlying data and the initial state data to have the same grouping so that the data are co-lacated on the same task.
- Definition Classes
- FlatMapGroupsInPandasWithStateExec → FlatMapGroupsWithStateExecBase → SparkPlan
-
def
requiredChildOrdering: Seq[Seq[SortOrder]]
Ordering needed for using GroupingIterator.
Ordering needed for using GroupingIterator. We need the initial state to also use the ordering as the data so that we can co-locate the keys from the underlying data and the initial state.
- Definition Classes
- FlatMapGroupsInPandasWithStateExec → FlatMapGroupsWithStateExecBase → SparkPlan
-
def
resetMetrics(): Unit
Resets all the metrics.
Resets all the metrics.
- Definition Classes
- SparkPlan
-
def
rewriteAttrs(attrMap: AttributeMap[Attribute]): SparkPlan
- Definition Classes
- QueryPlan
-
final
def
sameResult(other: SparkPlan): Boolean
- Definition Classes
- QueryPlan
-
lazy val
schema: StructType
- Definition Classes
- QueryPlan
-
def
schemaString: String
- Definition Classes
- QueryPlan
-
final
def
semanticHash(): Int
- Definition Classes
- QueryPlan
-
final
val
session: SparkSession
- Definition Classes
- SparkPlan
-
def
setLogicalLink(logicalPlan: LogicalPlan): Unit
Set logical plan link recursively if unset.
Set logical plan link recursively if unset.
- Definition Classes
- SparkPlan
-
def
setOperatorMetrics(numStateStoreInstances: Int = 1): Unit
Set the operator level metrics
Set the operator level metrics
- Attributes
- protected
- Definition Classes
- StateStoreWriter
-
def
setStoreMetrics(store: StateStore): Unit
Set the SQL metrics related to the state store.
Set the SQL metrics related to the state store. This should be called in that task after the store has been updated.
- Attributes
- protected
- Definition Classes
- StateStoreWriter
-
def
setTagValue[T](tag: TreeNodeTag[T], value: T): Unit
- Definition Classes
- TreeNode
-
def
shortName: String
Name to output in StreamingOperatorProgress to identify operator type
Name to output in StreamingOperatorProgress to identify operator type
- Definition Classes
- FlatMapGroupsInPandasWithStateExec → FlatMapGroupsWithStateExecBase → StateStoreWriter
-
def
shouldRunAnotherBatch(newMetadata: OffsetSeqMetadata): Boolean
Should the MicroBatchExecution run another batch based on this stateful operator and the current updated metadata.
Should the MicroBatchExecution run another batch based on this stateful operator and the current updated metadata.
- Definition Classes
- FlatMapGroupsWithStateExecBase → StateStoreWriter
-
def
simpleString(maxFields: Int): String
- Definition Classes
- QueryPlan → TreeNode
-
def
simpleStringWithNodeId(): String
- Definition Classes
- QueryPlan → TreeNode
-
def
sparkContext: SparkContext
- Attributes
- protected
- Definition Classes
- SparkPlan
-
val
stateEncoder: ExpressionEncoder[Any]
- Attributes
- protected
- Definition Classes
- FlatMapGroupsInPandasWithStateExec → FlatMapGroupsWithStateExecBase
-
val
stateFormatVersion: Int
- Definition Classes
- FlatMapGroupsInPandasWithStateExec → FlatMapGroupsWithStateExecBase
-
val
stateInfo: Option[StatefulOperatorStateInfo]
- Definition Classes
- FlatMapGroupsInPandasWithStateExec → FlatMapGroupsWithStateExecBase → StatefulOperator
-
lazy val
stateManager: StateManager
- Definition Classes
- FlatMapGroupsWithStateExecBase
-
def
statePrefix: String
- Attributes
- protected
- Definition Classes
- QueryPlan
- val stateType: StructType
-
def
stringArgs: Iterator[Any]
- Attributes
- protected
- Definition Classes
- TreeNode
-
lazy val
subqueries: Seq[SparkPlan]
- Definition Classes
- QueryPlan
- Annotations
- @transient()
-
def
subqueriesAll: Seq[SparkPlan]
- Definition Classes
- QueryPlan
-
def
supportsColumnar: Boolean
Return true if this stage of the plan supports columnar execution.
Return true if this stage of the plan supports columnar execution. A plan can also support row-based execution (see
supportsRowBased
). Spark will decide which execution to be called during query planning.- Definition Classes
- SparkPlan
-
def
supportsRowBased: Boolean
Return true if this stage of the plan supports row-based execution.
Return true if this stage of the plan supports row-based execution. A plan can also support columnar execution (see
supportsColumnar
). Spark will decide which execution to be called during query planning.- Definition Classes
- SparkPlan
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
timeTakenMs(body: ⇒ Unit): Long
Records the duration of running
body
for the next query progress update.Records the duration of running
body
for the next query progress update.- Attributes
- protected
- Definition Classes
- StateStoreWriter
-
val
timeoutConf: GroupStateTimeout
- Definition Classes
- FlatMapGroupsInPandasWithStateExec → FlatMapGroupsWithStateExecBase
-
def
toJSON: String
- Definition Classes
- TreeNode
-
def
toRowBased: SparkPlan
Converts the output of this plan to row-based if it is columnar plan.
Converts the output of this plan to row-based if it is columnar plan.
- Definition Classes
- SparkPlan
-
def
toString(): String
- Definition Classes
- TreeNode → AnyRef → Any
-
def
transform(rule: PartialFunction[SparkPlan, SparkPlan]): SparkPlan
- Definition Classes
- TreeNode
-
def
transformAllExpressions(rule: PartialFunction[Expression, Expression]): FlatMapGroupsInPandasWithStateExec.this.type
- Definition Classes
- QueryPlan
-
def
transformAllExpressionsWithPruning(cond: (TreePatternBits) ⇒ Boolean, ruleId: RuleId)(rule: PartialFunction[Expression, Expression]): FlatMapGroupsInPandasWithStateExec.this.type
- Definition Classes
- QueryPlan
-
def
transformDown(rule: PartialFunction[SparkPlan, SparkPlan]): SparkPlan
- Definition Classes
- TreeNode
-
def
transformDownWithPruning(cond: (TreePatternBits) ⇒ Boolean, ruleId: RuleId)(rule: PartialFunction[SparkPlan, SparkPlan]): SparkPlan
- Definition Classes
- TreeNode
-
def
transformDownWithSubqueries(f: PartialFunction[SparkPlan, SparkPlan]): SparkPlan
- Definition Classes
- QueryPlan
-
def
transformDownWithSubqueriesAndPruning(cond: (TreePatternBits) ⇒ Boolean, ruleId: RuleId)(f: PartialFunction[SparkPlan, SparkPlan]): SparkPlan
- Definition Classes
- QueryPlan
-
def
transformExpressions(rule: PartialFunction[Expression, Expression]): FlatMapGroupsInPandasWithStateExec.this.type
- Definition Classes
- QueryPlan
-
def
transformExpressionsDown(rule: PartialFunction[Expression, Expression]): FlatMapGroupsInPandasWithStateExec.this.type
- Definition Classes
- QueryPlan
-
def
transformExpressionsDownWithPruning(cond: (TreePatternBits) ⇒ Boolean, ruleId: RuleId)(rule: PartialFunction[Expression, Expression]): FlatMapGroupsInPandasWithStateExec.this.type
- Definition Classes
- QueryPlan
-
def
transformExpressionsUp(rule: PartialFunction[Expression, Expression]): FlatMapGroupsInPandasWithStateExec.this.type
- Definition Classes
- QueryPlan
-
def
transformExpressionsUpWithPruning(cond: (TreePatternBits) ⇒ Boolean, ruleId: RuleId)(rule: PartialFunction[Expression, Expression]): FlatMapGroupsInPandasWithStateExec.this.type
- Definition Classes
- QueryPlan
-
def
transformExpressionsWithPruning(cond: (TreePatternBits) ⇒ Boolean, ruleId: RuleId)(rule: PartialFunction[Expression, Expression]): FlatMapGroupsInPandasWithStateExec.this.type
- Definition Classes
- QueryPlan
-
def
transformUp(rule: PartialFunction[SparkPlan, SparkPlan]): SparkPlan
- Definition Classes
- TreeNode
-
def
transformUpWithBeforeAndAfterRuleOnChildren(cond: (SparkPlan) ⇒ Boolean, ruleId: RuleId)(rule: PartialFunction[(SparkPlan, SparkPlan), SparkPlan]): SparkPlan
- Definition Classes
- TreeNode
-
def
transformUpWithNewOutput(rule: PartialFunction[SparkPlan, (SparkPlan, Seq[(Attribute, Attribute)])], skipCond: (SparkPlan) ⇒ Boolean, canGetOutput: (SparkPlan) ⇒ Boolean): SparkPlan
- Definition Classes
- QueryPlan
-
def
transformUpWithPruning(cond: (TreePatternBits) ⇒ Boolean, ruleId: RuleId)(rule: PartialFunction[SparkPlan, SparkPlan]): SparkPlan
- Definition Classes
- TreeNode
-
def
transformUpWithSubqueries(f: PartialFunction[SparkPlan, SparkPlan]): SparkPlan
- Definition Classes
- QueryPlan
-
def
transformWithPruning(cond: (TreePatternBits) ⇒ Boolean, ruleId: RuleId)(rule: PartialFunction[SparkPlan, SparkPlan]): SparkPlan
- Definition Classes
- TreeNode
-
def
transformWithSubqueries(f: PartialFunction[SparkPlan, SparkPlan]): SparkPlan
- Definition Classes
- QueryPlan
-
lazy val
treePatternBits: BitSet
- Definition Classes
- QueryPlan → TreeNode → TreePatternBits
-
def
treeString(append: (String) ⇒ Unit, verbose: Boolean, addSuffix: Boolean, maxFields: Int, printOperatorId: Boolean): Unit
- Definition Classes
- TreeNode
-
final
def
treeString(verbose: Boolean, addSuffix: Boolean, maxFields: Int, printOperatorId: Boolean): String
- Definition Classes
- TreeNode
-
final
def
treeString: String
- Definition Classes
- TreeNode
-
def
unsetTagValue[T](tag: TreeNodeTag[T]): Unit
- Definition Classes
- TreeNode
-
def
updateOuterReferencesInSubquery(plan: SparkPlan, attrMap: AttributeMap[Attribute]): SparkPlan
- Attributes
- protected
- Definition Classes
- QueryPlan
-
def
vectorTypes: Option[Seq[String]]
The exact java types of the columns that are output in columnar processing mode.
The exact java types of the columns that are output in columnar processing mode. This is a performance optimization for code generation and is optional.
- Definition Classes
- SparkPlan
-
def
verboseString(maxFields: Int): String
- Definition Classes
- QueryPlan → TreeNode
-
def
verboseStringWithOperatorId(): String
- Definition Classes
- UnaryExecNode → QueryPlan
-
def
verboseStringWithSuffix(maxFields: Int): String
- Definition Classes
- TreeNode
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
def
waitForSubqueries(): Unit
Blocks the thread until all subqueries finish evaluation and update the results.
Blocks the thread until all subqueries finish evaluation and update the results.
- Attributes
- protected
- Definition Classes
- SparkPlan
-
lazy val
watermarkExpressionForEviction: Option[Expression]
Generate an expression that matches data older than the state eviction watermark
Generate an expression that matches data older than the state eviction watermark
- Definition Classes
- WatermarkSupport
-
lazy val
watermarkExpressionForLateEvents: Option[Expression]
Generate an expression that matches data older than late event filtering watermark
Generate an expression that matches data older than late event filtering watermark
- Definition Classes
- WatermarkSupport
-
lazy val
watermarkPredicateForDataForEviction: Option[BasePredicate]
- Definition Classes
- WatermarkSupport
-
lazy val
watermarkPredicateForDataForLateEvents: Option[BasePredicate]
Predicate based on the child output that matches data older than the watermark for late events filtering.
Predicate based on the child output that matches data older than the watermark for late events filtering.
- Definition Classes
- WatermarkSupport
-
lazy val
watermarkPredicateForKeysForEviction: Option[BasePredicate]
Generate an expression that matches data older than the state eviction watermark
Generate an expression that matches data older than the state eviction watermark
- Definition Classes
- WatermarkSupport
-
lazy val
watermarkPredicateForKeysForLateEvents: Option[BasePredicate]
Predicate based on keys that matches data older than the late event filtering watermark
Predicate based on keys that matches data older than the late event filtering watermark
- Definition Classes
- WatermarkSupport
-
val
watermarkPresent: Boolean
- Attributes
- protected
- Definition Classes
- FlatMapGroupsWithStateExecBase
-
def
withNewChildInternal(newChild: SparkPlan): FlatMapGroupsInPandasWithStateExec
- Attributes
- protected
- Definition Classes
- FlatMapGroupsInPandasWithStateExec → UnaryLike
-
final
def
withNewChildren(newChildren: Seq[SparkPlan]): SparkPlan
- Definition Classes
- TreeNode
-
final
def
withNewChildrenInternal(newChildren: IndexedSeq[SparkPlan]): SparkPlan
- Definition Classes
- UnaryLike