public class opencv_ml extends opencv_ml
Modifier and Type | Class and Description |
---|---|
static class |
opencv_ml.ANN_MLP
\brief Artificial Neural Networks - Multi-Layer Perceptrons.
|
static class |
opencv_ml.Boost
\brief Boosted tree classifier derived from DTrees
|
static class |
opencv_ml.DTrees
\brief The class represents a single decision tree or a collection of decision trees.
|
static class |
opencv_ml.EM
\brief The class implements the Expectation Maximization algorithm.
|
static class |
opencv_ml.KNearest
\brief The class implements K-Nearest Neighbors model
|
static class |
opencv_ml.LogisticRegression
\brief Implements Logistic Regression classifier.
|
static class |
opencv_ml.NormalBayesClassifier
\brief Bayes classifier for normally distributed data.
|
static class |
opencv_ml.ParamGrid
\brief The structure represents the logarithmic grid range of statmodel parameters.
|
static class |
opencv_ml.RTrees
\brief The class implements the random forest predictor.
|
static class |
opencv_ml.StatModel
\brief Base class for statistical models in OpenCV ML.
|
static class |
opencv_ml.SVM
\brief Support Vector Machines.
|
static class |
opencv_ml.TrainData
\brief Class encapsulating training data.
|
opencv_ml.AbstractStatModel
Modifier and Type | Field and Description |
---|---|
static int |
COL_SAMPLE
enum cv::ml::SampleTypes
|
static int |
ROW_SAMPLE
enum cv::ml::SampleTypes
|
static int |
TEST_ERROR
enum cv::ml::ErrorTypes
|
static int |
TRAIN_ERROR
enum cv::ml::ErrorTypes
|
static int |
VAR_CATEGORICAL
enum cv::ml::VariableTypes
|
static int |
VAR_NUMERICAL
enum cv::ml::VariableTypes
|
static int |
VAR_ORDERED
enum cv::ml::VariableTypes
|
Constructor and Description |
---|
opencv_ml() |
Modifier and Type | Method and Description |
---|---|
static void |
createConcentricSpheresTestSet(int nsamples,
int nfeatures,
int nclasses,
opencv_core.Mat samples,
opencv_core.Mat responses)
\brief Creates test set
|
static void |
randMVNormal(opencv_core.Mat mean,
opencv_core.Mat cov,
int nsamples,
opencv_core.Mat samples)
\brief Generates _sample_ from multivariate normal distribution
|
public static final int VAR_NUMERICAL
public static final int VAR_ORDERED
public static final int VAR_CATEGORICAL
public static final int TEST_ERROR
public static final int TRAIN_ERROR
public static final int ROW_SAMPLE
public static final int COL_SAMPLE
@Namespace(value="cv::ml") public static void randMVNormal(@ByVal opencv_core.Mat mean, @ByVal opencv_core.Mat cov, int nsamples, @ByVal opencv_core.Mat samples)
mean
- an average row vectorcov
- symmetric covariation matrixnsamples
- returned samples countsamples
- returned samples array@Namespace(value="cv::ml") public static void createConcentricSpheresTestSet(int nsamples, int nfeatures, int nclasses, @ByVal opencv_core.Mat samples, @ByVal opencv_core.Mat responses)
Copyright © 2016. All rights reserved.