| Class and Description |
|---|
| MultiLayerConfiguration
Configuration for a multi layer network
|
| Class and Description |
|---|
| CacheMode |
| NeuralNetConfiguration
A Serializable configuration
for neural nets that covers per layer parameters
|
| Class and Description |
|---|
| BackpropType
Defines the type of backpropagation.
|
| CacheMode |
| ComputationGraphConfiguration
ComputationGraphConfiguration is a configuration object for neural networks with arbitrary connection structure.
|
| ComputationGraphConfiguration.GraphBuilder |
| ConvolutionMode
ConvolutionMode defines how convolution operations should be executed for Convolutional and Subsampling layers,
for a given input size and network configuration (specifically stride/padding/kernel sizes).
Currently, 3 modes are provided: Strict: Output size for Convolutional and Subsampling layers are calculated as follows, in each dimension: outputSize = (inputSize - kernelSize + 2*padding) / stride + 1. |
| GradientNormalization
Gradient normalization strategies.
|
| InputPreProcessor
Input pre processor used
for pre processing input before passing it
to the neural network.
|
| LearningRatePolicy
Learning Rate Policy
How to decay learning rate during training.
|
| MultiLayerConfiguration
Configuration for a multi layer network
|
| MultiLayerConfiguration.Builder |
| NeuralNetConfiguration
A Serializable configuration
for neural nets that covers per layer parameters
|
| NeuralNetConfiguration.Builder |
| NeuralNetConfiguration.ListBuilder
Fluent interface for building a list of configurations
|
| Updater
All the possible different updaters
|
| WorkspaceMode |
| Class and Description |
|---|
| NeuralNetConfiguration
A Serializable configuration
for neural nets that covers per layer parameters
|
| Class and Description |
|---|
| ConvolutionMode
ConvolutionMode defines how convolution operations should be executed for Convolutional and Subsampling layers,
for a given input size and network configuration (specifically stride/padding/kernel sizes).
Currently, 3 modes are provided: Strict: Output size for Convolutional and Subsampling layers are calculated as follows, in each dimension: outputSize = (inputSize - kernelSize + 2*padding) / stride + 1. |
| GradientNormalization
Gradient normalization strategies.
|
| InputPreProcessor
Input pre processor used
for pre processing input before passing it
to the neural network.
|
| LearningRatePolicy
Learning Rate Policy
How to decay learning rate during training.
|
| NeuralNetConfiguration
A Serializable configuration
for neural nets that covers per layer parameters
|
| Updater
All the possible different updaters
|
| Class and Description |
|---|
| InputPreProcessor
Input pre processor used
for pre processing input before passing it
to the neural network.
|
| Updater
All the possible different updaters
|
| Class and Description |
|---|
| CacheMode |
| Class and Description |
|---|
| ComputationGraphConfiguration.GraphBuilder |
| Class and Description |
|---|
| InputPreProcessor
Input pre processor used
for pre processing input before passing it
to the neural network.
|
| Class and Description |
|---|
| ComputationGraphConfiguration
ComputationGraphConfiguration is a configuration object for neural networks with arbitrary connection structure.
|
| MultiLayerConfiguration
Configuration for a multi layer network
|
| Class and Description |
|---|
| CacheMode |
| ComputationGraphConfiguration
ComputationGraphConfiguration is a configuration object for neural networks with arbitrary connection structure.
|
| NeuralNetConfiguration
A Serializable configuration
for neural nets that covers per layer parameters
|
| Class and Description |
|---|
| InputPreProcessor
Input pre processor used
for pre processing input before passing it
to the neural network.
|
| Class and Description |
|---|
| CacheMode |
| NeuralNetConfiguration
A Serializable configuration
for neural nets that covers per layer parameters
|
| Class and Description |
|---|
| ConvolutionMode
ConvolutionMode defines how convolution operations should be executed for Convolutional and Subsampling layers,
for a given input size and network configuration (specifically stride/padding/kernel sizes).
Currently, 3 modes are provided: Strict: Output size for Convolutional and Subsampling layers are calculated as follows, in each dimension: outputSize = (inputSize - kernelSize + 2*padding) / stride + 1. |
| NeuralNetConfiguration
A Serializable configuration
for neural nets that covers per layer parameters
|
| Class and Description |
|---|
| ConvolutionMode
ConvolutionMode defines how convolution operations should be executed for Convolutional and Subsampling layers,
for a given input size and network configuration (specifically stride/padding/kernel sizes).
Currently, 3 modes are provided: Strict: Output size for Convolutional and Subsampling layers are calculated as follows, in each dimension: outputSize = (inputSize - kernelSize + 2*padding) / stride + 1. |
| NeuralNetConfiguration
A Serializable configuration
for neural nets that covers per layer parameters
|
| Class and Description |
|---|
| NeuralNetConfiguration
A Serializable configuration
for neural nets that covers per layer parameters
|
| Class and Description |
|---|
| NeuralNetConfiguration
A Serializable configuration
for neural nets that covers per layer parameters
|
| Class and Description |
|---|
| NeuralNetConfiguration
A Serializable configuration
for neural nets that covers per layer parameters
|
| Class and Description |
|---|
| NeuralNetConfiguration
A Serializable configuration
for neural nets that covers per layer parameters
|
| Class and Description |
|---|
| NeuralNetConfiguration
A Serializable configuration
for neural nets that covers per layer parameters
|
| Class and Description |
|---|
| NeuralNetConfiguration
A Serializable configuration
for neural nets that covers per layer parameters
|
| Class and Description |
|---|
| CacheMode |
| NeuralNetConfiguration
A Serializable configuration
for neural nets that covers per layer parameters
|
| Class and Description |
|---|
| NeuralNetConfiguration
A Serializable configuration
for neural nets that covers per layer parameters
|
| Class and Description |
|---|
| CacheMode |
| NeuralNetConfiguration
A Serializable configuration
for neural nets that covers per layer parameters
|
| Class and Description |
|---|
| CacheMode |
| MultiLayerConfiguration
Configuration for a multi layer network
|
| NeuralNetConfiguration
A Serializable configuration
for neural nets that covers per layer parameters
|
| Class and Description |
|---|
| NeuralNetConfiguration
A Serializable configuration
for neural nets that covers per layer parameters
|
| Class and Description |
|---|
| BackpropType
Defines the type of backpropagation.
|
| ComputationGraphConfiguration
ComputationGraphConfiguration is a configuration object for neural networks with arbitrary connection structure.
|
| ConvolutionMode
ConvolutionMode defines how convolution operations should be executed for Convolutional and Subsampling layers,
for a given input size and network configuration (specifically stride/padding/kernel sizes).
Currently, 3 modes are provided: Strict: Output size for Convolutional and Subsampling layers are calculated as follows, in each dimension: outputSize = (inputSize - kernelSize + 2*padding) / stride + 1. |
| GradientNormalization
Gradient normalization strategies.
|
| InputPreProcessor
Input pre processor used
for pre processing input before passing it
to the neural network.
|
| LearningRatePolicy
Learning Rate Policy
How to decay learning rate during training.
|
| MultiLayerConfiguration
Configuration for a multi layer network
|
| NeuralNetConfiguration
A Serializable configuration
for neural nets that covers per layer parameters
|
| NeuralNetConfiguration.Builder |
| Updater
All the possible different updaters
|
| WorkspaceMode |
| Class and Description |
|---|
| LearningRatePolicy
Learning Rate Policy
How to decay learning rate during training.
|
| Class and Description |
|---|
| NeuralNetConfiguration
A Serializable configuration
for neural nets that covers per layer parameters
|
| Class and Description |
|---|
| NeuralNetConfiguration
A Serializable configuration
for neural nets that covers per layer parameters
|
| Class and Description |
|---|
| NeuralNetConfiguration
A Serializable configuration
for neural nets that covers per layer parameters
|
| Class and Description |
|---|
| ConvolutionMode
ConvolutionMode defines how convolution operations should be executed for Convolutional and Subsampling layers,
for a given input size and network configuration (specifically stride/padding/kernel sizes).
Currently, 3 modes are provided: Strict: Output size for Convolutional and Subsampling layers are calculated as follows, in each dimension: outputSize = (inputSize - kernelSize + 2*padding) / stride + 1. |
| NeuralNetConfiguration
A Serializable configuration
for neural nets that covers per layer parameters
|
Copyright © 2017. All rights reserved.