public class DenseLayer extends BaseLayer<DenseLayer>
Layer.TrainingMode, Layer.Typegradient, gradientsFlattened, gradientViews, optimizer, params, paramsFlattened, score, solvercacheMode, conf, dropoutApplied, dropoutMask, index, input, iterationListeners, maskArray, maskState, preOutput| Constructor and Description |
|---|
DenseLayer(NeuralNetConfiguration conf) |
DenseLayer(NeuralNetConfiguration conf,
org.nd4j.linalg.api.ndarray.INDArray input) |
| Modifier and Type | Method and Description |
|---|---|
void |
fit(org.nd4j.linalg.api.ndarray.INDArray input)
Fit the model to the given data
|
boolean |
isPretrainLayer()
Returns true if the layer can be trained in an unsupervised/pretrain manner (VAE, RBMs etc)
|
accumulateScore, activate, activate, activate, activationMean, applyLearningRateScoreDecay, backpropGradient, calcGradient, calcL1, calcL2, clone, computeGradientAndScore, error, fit, getGradientsViewArray, getOptimizer, getParam, gradient, initParams, iterate, layerConf, merge, numParams, params, paramTable, paramTable, preOutput, preOutput, score, setBackpropGradientsViewArray, setParam, setParams, setParams, setParamsViewArray, setParamTable, setScoreWithZ, toString, transpose, update, updateactivate, activate, activate, addListeners, applyDropOutIfNecessary, applyMask, batchSize, clear, conf, derivativeActivation, feedForwardMaskArray, getIndex, getInput, getInputMiniBatchSize, getListeners, getMaskArray, gradientAndScore, init, input, layerId, numParams, preOutput, preOutput, setCacheMode, setConf, setIndex, setInput, setInputMiniBatchSize, setListeners, setListeners, setMaskArray, type, validateInputpublic DenseLayer(NeuralNetConfiguration conf)
public DenseLayer(NeuralNetConfiguration conf, org.nd4j.linalg.api.ndarray.INDArray input)
public void fit(org.nd4j.linalg.api.ndarray.INDArray input)
Modelfit in interface Modelfit in class BaseLayer<DenseLayer>input - the data to fit the model topublic boolean isPretrainLayer()
LayerCopyright © 2017. All rights reserved.