Class Yolo2OutputLayer.Builder
- java.lang.Object
-
- org.deeplearning4j.nn.conf.layers.Layer.Builder<Yolo2OutputLayer.Builder>
-
- org.deeplearning4j.nn.conf.layers.objdetect.Yolo2OutputLayer.Builder
-
- Enclosing class:
- Yolo2OutputLayer
public static class Yolo2OutputLayer.Builder extends Layer.Builder<Yolo2OutputLayer.Builder>
-
-
Field Summary
-
Fields inherited from class org.deeplearning4j.nn.conf.layers.Layer.Builder
allParamConstraints, biasConstraints, iDropout, layerName, weightConstraints
-
-
Constructor Summary
Constructors Constructor Description Builder()
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description Yolo2OutputLayer.BuilderboundingBoxPriors(INDArray boundingBoxes)Bounding box priors dimensions [width, height].Yolo2OutputLayerbuild()Yolo2OutputLayer.BuilderlambdaCoord(double lambdaCoord)Loss function coefficient for position and size/scale components of the loss function.Yolo2OutputLayer.BuilderlambdaNoObj(double lambdaNoObj)Loss function coefficient for the "no object confidence" components of the loss function.Yolo2OutputLayer.BuilderlossClassPredictions(ILossFunction lossClassPredictions)Loss function for the class predictions - defaults to L2 loss (i.e., sum of squared errors, as per the paper), however Loss MCXENT could also be used (which is more common for classification).Yolo2OutputLayer.BuilderlossPositionScale(ILossFunction lossPositionScale)Loss function for position/scale component of the loss function-
Methods inherited from class org.deeplearning4j.nn.conf.layers.Layer.Builder
constrainAllParameters, constrainBias, constrainWeights, dropOut, dropOut, name
-
-
-
-
Method Detail
-
lambdaCoord
public Yolo2OutputLayer.Builder lambdaCoord(double lambdaCoord)
Loss function coefficient for position and size/scale components of the loss function. Default (as per paper): 5- Parameters:
lambdaCoord- Lambda value for size/scale component of loss function
-
lambdaNoObj
public Yolo2OutputLayer.Builder lambdaNoObj(double lambdaNoObj)
Loss function coefficient for the "no object confidence" components of the loss function. Default (as per paper): 0.5- Parameters:
lambdaNoObj- Lambda value for no-object (confidence) component of the loss function
-
lossPositionScale
public Yolo2OutputLayer.Builder lossPositionScale(ILossFunction lossPositionScale)
Loss function for position/scale component of the loss function- Parameters:
lossPositionScale- Loss function for position/scale
-
lossClassPredictions
public Yolo2OutputLayer.Builder lossClassPredictions(ILossFunction lossClassPredictions)
Loss function for the class predictions - defaults to L2 loss (i.e., sum of squared errors, as per the paper), however Loss MCXENT could also be used (which is more common for classification).- Parameters:
lossClassPredictions- Loss function for the class prediction error component of the YOLO loss function
-
boundingBoxPriors
public Yolo2OutputLayer.Builder boundingBoxPriors(INDArray boundingBoxes)
Bounding box priors dimensions [width, height]. For N bounding boxes, input has shape [rows, columns] = [N, 2] Note that dimensions should be specified as fraction of grid size. For example, a network with 13x13 output, a value of 1.0 would correspond to one grid cell; a value of 13 would correspond to the entire image.- Parameters:
boundingBoxes- Bounding box prior dimensions (width, height)
-
build
public Yolo2OutputLayer build()
- Specified by:
buildin classLayer.Builder<Yolo2OutputLayer.Builder>
-
-