Class MaskZeroLayer
- java.lang.Object
-
- org.deeplearning4j.nn.conf.layers.Layer
-
- org.deeplearning4j.nn.conf.layers.wrapper.BaseWrapperLayer
-
- org.deeplearning4j.nn.conf.layers.util.MaskZeroLayer
-
- All Implemented Interfaces:
Serializable,Cloneable,TrainingConfig
public class MaskZeroLayer extends BaseWrapperLayer
- See Also:
- Serialized Form
-
-
Nested Class Summary
Nested Classes Modifier and Type Class Description static classMaskZeroLayer.Builder
-
Field Summary
-
Fields inherited from class org.deeplearning4j.nn.conf.layers.wrapper.BaseWrapperLayer
underlying
-
Fields inherited from class org.deeplearning4j.nn.conf.layers.Layer
constraints, iDropout, layerName
-
-
Constructor Summary
Constructors Constructor Description MaskZeroLayer(Layer underlying, double maskingValue)MaskZeroLayer(MaskZeroLayer.Builder builder)
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description LayerMemoryReportgetMemoryReport(InputType inputType)This is a report of the estimated memory consumption for the given layerInputTypegetOutputType(int layerIndex, InputType inputType)For a given type of input to this layer, what is the type of the output?InputPreProcessorgetPreProcessorForInputType(InputType inputType)For the given type of input to this layer, what preprocessor (if any) is required?
Returns null if no preprocessor is required, otherwise returns an appropriateInputPreProcessorfor this layer, such as aCnnToFeedForwardPreProcessorLayerinstantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType)booleanisPretrainParam(String paramName)Is the specified parameter a layerwise pretraining only parameter?
For example, visible bias params in an autoencoder (or, decoder params in a variational autoencoder) aren't used during supervised backprop.
Layers (like DenseLayer, etc) with no pretrainable parameters will return false for all (valid) inputs.voidsetNIn(InputType inputType, boolean override)Set the nIn value (number of inputs, or input channels for CNNs) based on the given input typeStringtoString()-
Methods inherited from class org.deeplearning4j.nn.conf.layers.wrapper.BaseWrapperLayer
getGradientNormalization, getGradientNormalizationThreshold, getRegularizationByParam, initializer, setLayerName
-
Methods inherited from class org.deeplearning4j.nn.conf.layers.Layer
clone, getUpdaterByParam, initializeConstraints, resetLayerDefaultConfig, setDataType
-
Methods inherited from class java.lang.Object
equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
-
Methods inherited from interface org.deeplearning4j.nn.api.TrainingConfig
getLayerName
-
-
-
-
Constructor Detail
-
MaskZeroLayer
public MaskZeroLayer(MaskZeroLayer.Builder builder)
-
MaskZeroLayer
public MaskZeroLayer(Layer underlying, double maskingValue)
-
-
Method Detail
-
instantiate
public Layer instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType)
- Specified by:
instantiatein classLayer
-
getOutputType
public InputType getOutputType(int layerIndex, InputType inputType)
Description copied from class:LayerFor a given type of input to this layer, what is the type of the output?- Overrides:
getOutputTypein classBaseWrapperLayer- Parameters:
layerIndex- Index of the layerinputType- Type of input for the layer- Returns:
- Type of output from the layer
-
setNIn
public void setNIn(InputType inputType, boolean override)
Description copied from class:LayerSet the nIn value (number of inputs, or input channels for CNNs) based on the given input type- Overrides:
setNInin classBaseWrapperLayer- Parameters:
inputType- Input type for this layeroverride- If false: only set the nIn value if it's not already set. If true: set it regardless of whether it's already set or not.
-
getPreProcessorForInputType
public InputPreProcessor getPreProcessorForInputType(InputType inputType)
Description copied from class:LayerFor the given type of input to this layer, what preprocessor (if any) is required?
Returns null if no preprocessor is required, otherwise returns an appropriateInputPreProcessorfor this layer, such as aCnnToFeedForwardPreProcessor- Overrides:
getPreProcessorForInputTypein classBaseWrapperLayer- Parameters:
inputType- InputType to this layer- Returns:
- Null if no preprocessor is required, otherwise the type of preprocessor necessary for this layer/input combination
-
isPretrainParam
public boolean isPretrainParam(String paramName)
Description copied from class:LayerIs the specified parameter a layerwise pretraining only parameter?
For example, visible bias params in an autoencoder (or, decoder params in a variational autoencoder) aren't used during supervised backprop.
Layers (like DenseLayer, etc) with no pretrainable parameters will return false for all (valid) inputs.- Specified by:
isPretrainParamin interfaceTrainingConfig- Overrides:
isPretrainParamin classBaseWrapperLayer- Parameters:
paramName- Parameter name/key- Returns:
- True if the parameter is for layerwise pretraining only, false otherwise
-
getMemoryReport
public LayerMemoryReport getMemoryReport(InputType inputType)
Description copied from class:LayerThis is a report of the estimated memory consumption for the given layer- Overrides:
getMemoryReportin classBaseWrapperLayer- Parameters:
inputType- Input type to the layer. Memory consumption is often a function of the input type- Returns:
- Memory report for the layer
-
-