Class BaseWrapperLayer
- java.lang.Object
-
- org.deeplearning4j.nn.conf.layers.Layer
-
- org.deeplearning4j.nn.conf.layers.wrapper.BaseWrapperLayer
-
- All Implemented Interfaces:
Serializable,Cloneable,TrainingConfig
- Direct Known Subclasses:
FrozenLayerWithBackprop,LastTimeStep,MaskZeroLayer,TimeDistributed
public abstract class BaseWrapperLayer extends Layer
- See Also:
- Serialized Form
-
-
Nested Class Summary
-
Nested classes/interfaces inherited from class org.deeplearning4j.nn.conf.layers.Layer
Layer.Builder<T extends Layer.Builder<T>>
-
-
Field Summary
Fields Modifier and Type Field Description protected Layerunderlying-
Fields inherited from class org.deeplearning4j.nn.conf.layers.Layer
constraints, iDropout, layerName
-
-
Constructor Summary
Constructors Modifier Constructor Description protectedBaseWrapperLayer()BaseWrapperLayer(Layer underlying)protectedBaseWrapperLayer(Layer.Builder builder)
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description GradientNormalizationgetGradientNormalization()doublegetGradientNormalizationThreshold()LayerMemoryReportgetMemoryReport(InputType inputType)This is a report of the estimated memory consumption for the given layerInputTypegetOutputType(int layerIndex, InputType inputType)For a given type of input to this layer, what is the type of the output?InputPreProcessorgetPreProcessorForInputType(InputType inputType)For the given type of input to this layer, what preprocessor (if any) is required?
Returns null if no preprocessor is required, otherwise returns an appropriateInputPreProcessorfor this layer, such as aCnnToFeedForwardPreProcessorList<Regularization>getRegularizationByParam(String paramName)Get the regularization types (l1/l2/weight decay) for the given parameter.ParamInitializerinitializer()booleanisPretrainParam(String paramName)Is the specified parameter a layerwise pretraining only parameter?
For example, visible bias params in an autoencoder (or, decoder params in a variational autoencoder) aren't used during supervised backprop.
Layers (like DenseLayer, etc) with no pretrainable parameters will return false for all (valid) inputs.voidsetLayerName(String layerName)voidsetNIn(InputType inputType, boolean override)Set the nIn value (number of inputs, or input channels for CNNs) based on the given input type-
Methods inherited from class org.deeplearning4j.nn.conf.layers.Layer
clone, getUpdaterByParam, initializeConstraints, instantiate, resetLayerDefaultConfig, setDataType
-
Methods inherited from class java.lang.Object
equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Methods inherited from interface org.deeplearning4j.nn.api.TrainingConfig
getLayerName
-
-
-
-
Field Detail
-
underlying
protected Layer underlying
-
-
Constructor Detail
-
BaseWrapperLayer
protected BaseWrapperLayer(Layer.Builder builder)
-
BaseWrapperLayer
protected BaseWrapperLayer()
-
BaseWrapperLayer
public BaseWrapperLayer(Layer underlying)
-
-
Method Detail
-
initializer
public ParamInitializer initializer()
- Specified by:
initializerin classLayer- Returns:
- The parameter initializer for this model
-
getOutputType
public InputType getOutputType(int layerIndex, InputType inputType)
Description copied from class:LayerFor a given type of input to this layer, what is the type of the output?- Specified by:
getOutputTypein classLayer- Parameters:
layerIndex- Index of the layerinputType- Type of input for the layer- Returns:
- Type of output from the layer
-
setNIn
public void setNIn(InputType inputType, boolean override)
Description copied from class:LayerSet the nIn value (number of inputs, or input channels for CNNs) based on the given input type
-
getPreProcessorForInputType
public InputPreProcessor getPreProcessorForInputType(InputType inputType)
Description copied from class:LayerFor the given type of input to this layer, what preprocessor (if any) is required?
Returns null if no preprocessor is required, otherwise returns an appropriateInputPreProcessorfor this layer, such as aCnnToFeedForwardPreProcessor- Specified by:
getPreProcessorForInputTypein classLayer- Parameters:
inputType- InputType to this layer- Returns:
- Null if no preprocessor is required, otherwise the type of preprocessor necessary for this layer/input combination
-
getRegularizationByParam
public List<Regularization> getRegularizationByParam(String paramName)
Description copied from class:LayerGet the regularization types (l1/l2/weight decay) for the given parameter. Different parameters may have different regularization types.- Specified by:
getRegularizationByParamin interfaceTrainingConfig- Specified by:
getRegularizationByParamin classLayer- Parameters:
paramName- Parameter name ("W", "b" etc)- Returns:
- Regularization types (if any) for the specified parameter
-
getGradientNormalization
public GradientNormalization getGradientNormalization()
- Returns:
- The gradient normalization configuration
-
getGradientNormalizationThreshold
public double getGradientNormalizationThreshold()
- Returns:
- The gradient normalization threshold
-
isPretrainParam
public boolean isPretrainParam(String paramName)
Description copied from class:LayerIs the specified parameter a layerwise pretraining only parameter?
For example, visible bias params in an autoencoder (or, decoder params in a variational autoencoder) aren't used during supervised backprop.
Layers (like DenseLayer, etc) with no pretrainable parameters will return false for all (valid) inputs.- Specified by:
isPretrainParamin interfaceTrainingConfig- Specified by:
isPretrainParamin classLayer- Parameters:
paramName- Parameter name/key- Returns:
- True if the parameter is for layerwise pretraining only, false otherwise
-
getMemoryReport
public LayerMemoryReport getMemoryReport(InputType inputType)
Description copied from class:LayerThis is a report of the estimated memory consumption for the given layer- Specified by:
getMemoryReportin classLayer- Parameters:
inputType- Input type to the layer. Memory consumption is often a function of the input type- Returns:
- Memory report for the layer
-
setLayerName
public void setLayerName(String layerName)
-
-