| Class and Description |
|---|
| Layer
A neural network layer.
|
| Class and Description |
|---|
| ConvolutionLayer.AlgoMode
The "PREFER_FASTEST" mode will pick the fastest algorithm for the specified parameters from the
ConvolutionLayer.FwdAlgo,
ConvolutionLayer.BwdFilterAlgo, and ConvolutionLayer.BwdDataAlgo lists, but they may be very memory intensive, so if weird errors
occur when using cuDNN, please try the "NO_WORKSPACE" mode. |
| Layer
A neural network layer.
|
| Class and Description |
|---|
| Convolution3D.DataFormat
An optional dataFormat: "NDHWC" or "NCDHW".
|
| Class and Description |
|---|
| Layer
A neural network layer.
|
| Layer.Builder |
| NoParamLayer |
| Class and Description |
|---|
| BaseLayer
A neural network layer.
|
| BaseLayer.Builder |
| FeedForwardLayer |
| FeedForwardLayer.Builder |
| Layer
A neural network layer.
|
| Layer.Builder |
| Class and Description |
|---|
| Layer
A neural network layer.
|
| Layer.Builder |
| Class and Description |
|---|
| BaseLayer
A neural network layer.
|
| BaseLayer.Builder |
| BaseRecurrentLayer |
| BaseRecurrentLayer.Builder |
| FeedForwardLayer |
| FeedForwardLayer.Builder |
| Layer
A neural network layer.
|
| Layer.Builder |
| Class and Description |
|---|
| Layer
A neural network layer.
|
| Layer.Builder |
| Class and Description |
|---|
| Layer
A neural network layer.
|
| Layer.Builder |
| NoParamLayer |
| Class and Description |
|---|
| BaseLayer
A neural network layer.
|
| BaseLayer.Builder |
| BasePretrainNetwork |
| BasePretrainNetwork.Builder |
| FeedForwardLayer |
| FeedForwardLayer.Builder |
| Layer
A neural network layer.
|
| Layer.Builder |
| Class and Description |
|---|
| Layer
A neural network layer.
|
| Layer.Builder |
| Class and Description |
|---|
| BaseLayer
A neural network layer.
|
| BaseLayer.Builder |
| BaseOutputLayer |
| BaseOutputLayer.Builder |
| FeedForwardLayer |
| FeedForwardLayer.Builder |
| Layer
A neural network layer.
|
| Layer.Builder |
| Class and Description |
|---|
| Convolution3D.DataFormat
An optional dataFormat: "NDHWC" or "NCDHW".
|
| Class and Description |
|---|
| BaseLayer
A neural network layer.
|
| BaseOutputLayer |
| Layer
A neural network layer.
|
| Class and Description |
|---|
| BaseOutputLayer |
| BasePretrainNetwork |
| Layer
A neural network layer.
|
| Class and Description |
|---|
| Convolution1DLayer |
| ConvolutionLayer.AlgoMode
The "PREFER_FASTEST" mode will pick the fastest algorithm for the specified parameters from the
ConvolutionLayer.FwdAlgo,
ConvolutionLayer.BwdFilterAlgo, and ConvolutionLayer.BwdDataAlgo lists, but they may be very memory intensive, so if weird errors
occur when using cuDNN, please try the "NO_WORKSPACE" mode. |
| ConvolutionLayer.BwdDataAlgo
The backward data algorithm to use when
ConvolutionLayer.AlgoMode is set to "USER_SPECIFIED". |
| ConvolutionLayer.BwdFilterAlgo
The backward filter algorithm to use when
ConvolutionLayer.AlgoMode is set to "USER_SPECIFIED". |
| ConvolutionLayer.FwdAlgo
The forward algorithm to use when
ConvolutionLayer.AlgoMode is set to "USER_SPECIFIED". |
| Class and Description |
|---|
| PoolingType
Pooling type:
MAX: Max pooling - output is the maximum value of the input values AVG: Average pooling - output is the average value of the input values SUM: Sum pooling - output is the sum of the input values PNORM: P-norm pooling |
| Class and Description |
|---|
| ConvolutionLayer.AlgoMode
The "PREFER_FASTEST" mode will pick the fastest algorithm for the specified parameters from the
ConvolutionLayer.FwdAlgo,
ConvolutionLayer.BwdFilterAlgo, and ConvolutionLayer.BwdDataAlgo lists, but they may be very memory intensive, so if weird errors
occur when using cuDNN, please try the "NO_WORKSPACE" mode. |
| ConvolutionLayer.BwdDataAlgo
The backward data algorithm to use when
ConvolutionLayer.AlgoMode is set to "USER_SPECIFIED". |
| ConvolutionLayer.BwdFilterAlgo
The backward filter algorithm to use when
ConvolutionLayer.AlgoMode is set to "USER_SPECIFIED". |
| ConvolutionLayer.FwdAlgo
The forward algorithm to use when
ConvolutionLayer.AlgoMode is set to "USER_SPECIFIED". |
| PoolingType
Pooling type:
MAX: Max pooling - output is the maximum value of the input values AVG: Average pooling - output is the average value of the input values SUM: Sum pooling - output is the sum of the input values PNORM: P-norm pooling |
| Class and Description |
|---|
| Layer
A neural network layer.
|
| Class and Description |
|---|
| AbstractLSTM |
| BaseRecurrentLayer |
| FeedForwardLayer |
| GravesBidirectionalLSTM
Deprecated.
|
| Class and Description |
|---|
| Layer
A neural network layer.
|
| Class and Description |
|---|
| Layer
A neural network layer.
|
| Class and Description |
|---|
| ConvolutionLayer.AlgoMode
The "PREFER_FASTEST" mode will pick the fastest algorithm for the specified parameters from the
ConvolutionLayer.FwdAlgo,
ConvolutionLayer.BwdFilterAlgo, and ConvolutionLayer.BwdDataAlgo lists, but they may be very memory intensive, so if weird errors
occur when using cuDNN, please try the "NO_WORKSPACE" mode. |
| Layer
A neural network layer.
|
| Class and Description |
|---|
| Convolution3D.DataFormat
An optional dataFormat: "NDHWC" or "NCDHW".
|
| Layer
A neural network layer.
|
| PoolingType
Pooling type:
MAX: Max pooling - output is the maximum value of the input values AVG: Average pooling - output is the average value of the input values SUM: Sum pooling - output is the sum of the input values PNORM: P-norm pooling |
Copyright © 2022. All rights reserved.