public abstract class BaseWrapperLayer extends Layer
Layer.Builder<T extends Layer.Builder<T>>| Modifier and Type | Field and Description |
|---|---|
protected Layer |
underlying |
constraints, iDropout, layerName| Modifier | Constructor and Description |
|---|---|
protected |
BaseWrapperLayer() |
protected |
BaseWrapperLayer(Layer.Builder builder) |
|
BaseWrapperLayer(Layer underlying) |
| Modifier and Type | Method and Description |
|---|---|
GradientNormalization |
getGradientNormalization() |
double |
getGradientNormalizationThreshold() |
LayerMemoryReport |
getMemoryReport(InputType inputType)
This is a report of the estimated memory consumption for the given layer
|
InputType |
getOutputType(int layerIndex,
InputType inputType)
For a given type of input to this layer, what is the type of the output?
|
InputPreProcessor |
getPreProcessorForInputType(InputType inputType)
For the given type of input to this layer, what preprocessor (if any) is required?
Returns null if no preprocessor is required, otherwise returns an appropriate InputPreProcessor for this layer, such as a CnnToFeedForwardPreProcessor |
List<Regularization> |
getRegularizationByParam(String paramName)
Get the regularization types (l1/l2/weight decay) for the given parameter.
|
ParamInitializer |
initializer() |
boolean |
isPretrainParam(String paramName)
Is the specified parameter a layerwise pretraining only parameter?
For example, visible bias params in an autoencoder (or, decoder params in a variational autoencoder) aren't used during supervised backprop. Layers (like DenseLayer, etc) with no pretrainable parameters will return false for all (valid) inputs. |
void |
setLayerName(String layerName) |
void |
setNIn(InputType inputType,
boolean override)
Set the nIn value (number of inputs, or input channels for CNNs) based on the given input
type
|
clone, getUpdaterByParam, initializeConstraints, instantiate, resetLayerDefaultConfig, setDataTypeequals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitgetLayerNameprotected Layer underlying
protected BaseWrapperLayer(Layer.Builder builder)
protected BaseWrapperLayer()
public BaseWrapperLayer(Layer underlying)
public ParamInitializer initializer()
initializer in class Layerpublic InputType getOutputType(int layerIndex, InputType inputType)
LayergetOutputType in class LayerlayerIndex - Index of the layerinputType - Type of input for the layerpublic void setNIn(InputType inputType, boolean override)
Layerpublic InputPreProcessor getPreProcessorForInputType(InputType inputType)
LayerInputPreProcessor for this layer, such as a CnnToFeedForwardPreProcessorgetPreProcessorForInputType in class LayerinputType - InputType to this layerpublic List<Regularization> getRegularizationByParam(String paramName)
LayergetRegularizationByParam in interface TrainingConfiggetRegularizationByParam in class LayerparamName - Parameter name ("W", "b" etc)public GradientNormalization getGradientNormalization()
public double getGradientNormalizationThreshold()
public boolean isPretrainParam(String paramName)
LayerisPretrainParam in interface TrainingConfigisPretrainParam in class LayerparamName - Parameter name/keypublic LayerMemoryReport getMemoryReport(InputType inputType)
LayergetMemoryReport in class LayerinputType - Input type to the layer. Memory consumption is often a function of the input
typepublic void setLayerName(String layerName)
Copyright © 2022. All rights reserved.