public class DenseLayer extends BaseLayer<DenseLayer>
Layer.TrainingMode, Layer.Typegradient, gradientsFlattened, gradientViews, optimizer, params, paramsFlattened, score, solver, weightNoiseParamscacheMode, conf, dataType, dropoutApplied, epochCount, index, input, inputModificationAllowed, iterationCount, maskArray, maskState, preOutput, trainingListeners| Constructor and Description |
|---|
DenseLayer(NeuralNetConfiguration conf,
DataType dataType) |
| Modifier and Type | Method and Description |
|---|---|
void |
fit(INDArray input,
LayerWorkspaceMgr workspaceMgr)
Fit the model to the given data
|
boolean |
hasBias()
Does this layer have no bias term? Many layers (dense, convolutional, output, embedding) have biases by
default, but no-bias versions are possible via configuration
|
boolean |
hasLayerNorm()
Does this layer support and is it enabled layer normalization? Only Dense and SimpleRNN Layers support
layer normalization.
|
boolean |
isPretrainLayer()
Returns true if the layer can be trained in an unsupervised/pretrain manner (AE, VAE, etc)
|
activate, backpropGradient, calcRegularizationScore, clear, clearNoiseWeightParams, clone, computeGradientAndScore, fit, getGradientsViewArray, getOptimizer, getParam, getParamWithNoise, gradient, layerConf, numParams, params, paramTable, paramTable, preOutput, preOutputWithPreNorm, score, setBackpropGradientsViewArray, setParam, setParams, setParams, setParamsViewArray, setParamTable, setScoreWithZ, toString, update, updateactivate, addListeners, allowInputModification, applyConstraints, applyDropOutIfNecessary, applyMask, assertInputSet, backpropDropOutIfPresent, batchSize, close, conf, feedForwardMaskArray, getConfig, getEpochCount, getHelper, getIndex, getInput, getInputMiniBatchSize, getListeners, getMaskArray, gradientAndScore, init, input, layerId, numParams, setCacheMode, setConf, setEpochCount, setIndex, setInput, setInputMiniBatchSize, setListeners, setListeners, setMaskArray, type, updaterDivideByMinibatchequals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, waitgetIterationCount, setIterationCountpublic DenseLayer(NeuralNetConfiguration conf, DataType dataType)
public void fit(INDArray input, LayerWorkspaceMgr workspaceMgr)
Modelfit in interface Modelfit in class BaseLayer<DenseLayer>input - the data to fit the model topublic boolean isPretrainLayer()
Layerpublic boolean hasBias()
BaseLayerhasBias in class BaseLayer<DenseLayer>public boolean hasLayerNorm()
BaseLayerhasLayerNorm in class BaseLayer<DenseLayer>Copyright © 2022. All rights reserved.