Bidirectional instead. With the
Bidirectional layer wrapper you can make any recurrent layer bidirectional, in particular GravesLSTM.
Note that this layer adds the output of both directions, which translates into "ADD" mode in Bidirectional.
Usage: .layer(new Bidirectional(Bidirectional.Mode.ADD, new GravesLSTM.Builder()....build()))@Deprecated public class GravesBidirectionalLSTM extends BaseRecurrentLayer
| Modifier and Type | Class and Description |
|---|---|
static class |
GravesBidirectionalLSTM.Builder
Deprecated.
|
distRecurrent, weightInitRecurrentnIn, nOutactivationFn, biasInit, biasUpdater, dist, gradientNormalization, gradientNormalizationThreshold, iUpdater, l1, l1Bias, l2, l2Bias, weightInit, weightNoiseconstraints, iDropout, layerName| Modifier and Type | Method and Description |
|---|---|
double |
getL1ByParam(String paramName)
Deprecated.
Get the L1 coefficient for the given parameter.
|
double |
getL2ByParam(String paramName)
Deprecated.
Get the L2 coefficient for the given parameter.
|
LayerMemoryReport |
getMemoryReport(InputType inputType)
Deprecated.
This is a report of the estimated memory consumption for the given layer
|
protected void |
initializeConstraints(Layer.Builder<?> builder)
Deprecated.
Initialize the weight constraints.
|
ParamInitializer |
initializer()
Deprecated.
|
Layer |
instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
org.nd4j.linalg.api.ndarray.INDArray layerParamsView,
boolean initializeParams)
Deprecated.
|
getOutputType, getPreProcessorForInputType, setNInisPretrainParamclone, getUpdaterByParam, resetLayerDefaultConfigprotected void initializeConstraints(Layer.Builder<?> builder)
LayerinitializeConstraints in class Layerpublic Layer instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, org.nd4j.linalg.api.ndarray.INDArray layerParamsView, boolean initializeParams)
instantiate in class Layerpublic ParamInitializer initializer()
initializer in class Layerpublic double getL1ByParam(String paramName)
LayergetL1ByParam in class FeedForwardLayerparamName - Parameter namepublic double getL2ByParam(String paramName)
LayergetL2ByParam in class FeedForwardLayerparamName - Parameter namepublic LayerMemoryReport getMemoryReport(InputType inputType)
LayergetMemoryReport in class LayerinputType - Input type to the layer. Memory consumption is often a function of the input typeCopyright © 2018. All rights reserved.