public class Subsampling3DLayer extends Layer
Supports max and average pooling modes
| Modifier and Type | Class and Description |
|---|---|
protected static class |
Subsampling3DLayer.BaseSubsamplingBuilder<T extends Subsampling3DLayer.BaseSubsamplingBuilder<T>> |
static class |
Subsampling3DLayer.Builder |
static class |
Subsampling3DLayer.PoolingType |
| Modifier and Type | Field and Description |
|---|---|
protected ConvolutionMode |
convolutionMode |
protected boolean |
cudnnAllowFallback |
protected int[] |
kernelSize |
protected int[] |
padding |
protected PoolingType |
poolingType |
protected int[] |
stride |
constraints, iDropout, layerName| Modifier | Constructor and Description |
|---|---|
protected |
Subsampling3DLayer(Subsampling3DLayer.BaseSubsamplingBuilder builder) |
| Modifier and Type | Method and Description |
|---|---|
Subsampling3DLayer |
clone() |
double |
getL1ByParam(String paramName)
Get the L1 coefficient for the given parameter.
|
double |
getL2ByParam(String paramName)
Get the L2 coefficient for the given parameter.
|
LayerMemoryReport |
getMemoryReport(InputType inputType)
This is a report of the estimated memory consumption for the given layer
|
InputType |
getOutputType(int layerIndex,
InputType inputType)
For a given type of input to this layer, what is the type of the output?
|
InputPreProcessor |
getPreProcessorForInputType(InputType inputType)
For the given type of input to this layer, what preprocessor (if any) is required?
Returns null if no preprocessor is required, otherwise returns an appropriate InputPreProcessor
for this layer, such as a CnnToFeedForwardPreProcessor |
ParamInitializer |
initializer() |
Layer |
instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> iterationListeners,
int layerIndex,
org.nd4j.linalg.api.ndarray.INDArray layerParamsView,
boolean initializeParams) |
boolean |
isPretrainParam(String paramName)
Is the specified parameter a layerwise pretraining only parameter?
For example, visible bias params in an autoencoder (or, decoder params in a variational autoencoder) aren't used during supervised backprop. Layers (like DenseLayer, etc) with no pretrainable parameters will return false for all (valid) inputs. |
void |
setNIn(InputType inputType,
boolean override)
Set the nIn value (number of inputs, or input channels for CNNs) based on the given input type
|
getUpdaterByParam, initializeConstraints, resetLayerDefaultConfigprotected ConvolutionMode convolutionMode
protected PoolingType poolingType
protected int[] kernelSize
protected int[] stride
protected int[] padding
protected boolean cudnnAllowFallback
protected Subsampling3DLayer(Subsampling3DLayer.BaseSubsamplingBuilder builder)
public Subsampling3DLayer clone()
public Layer instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> iterationListeners, int layerIndex, org.nd4j.linalg.api.ndarray.INDArray layerParamsView, boolean initializeParams)
instantiate in class Layerpublic ParamInitializer initializer()
initializer in class Layerpublic InputType getOutputType(int layerIndex, InputType inputType)
LayergetOutputType in class LayerlayerIndex - Index of the layerinputType - Type of input for the layerpublic void setNIn(InputType inputType, boolean override)
Layerpublic InputPreProcessor getPreProcessorForInputType(InputType inputType)
LayerInputPreProcessor
for this layer, such as a CnnToFeedForwardPreProcessorgetPreProcessorForInputType in class LayerinputType - InputType to this layerpublic double getL1ByParam(String paramName)
LayergetL1ByParam in class LayerparamName - Parameter namepublic double getL2ByParam(String paramName)
LayergetL2ByParam in class LayerparamName - Parameter namepublic boolean isPretrainParam(String paramName)
LayerisPretrainParam in class LayerparamName - Parameter name/keypublic LayerMemoryReport getMemoryReport(InputType inputType)
LayergetMemoryReport in class LayerinputType - Input type to the layer. Memory consumption is often a function of the input typeCopyright © 2018. All rights reserved.