public class RepeatVector extends FeedForwardLayer
Modifier and Type | Class and Description |
---|---|
static class |
RepeatVector.Builder<T extends RepeatVector.Builder<T>> |
nIn, nOut
activationFn, biasInit, biasUpdater, gainInit, gradientNormalization, gradientNormalizationThreshold, iUpdater, regularization, regularizationBias, weightInitFn, weightNoise
constraints, iDropout, layerName
Modifier | Constructor and Description |
---|---|
protected |
RepeatVector(RepeatVector.Builder builder) |
Modifier and Type | Method and Description |
---|---|
RepeatVector |
clone() |
LayerMemoryReport |
getMemoryReport(InputType inputType)
This is a report of the estimated memory consumption for the given layer
|
InputType |
getOutputType(int layerIndex,
InputType inputType)
For a given type of input to this layer, what is the type of the output?
|
ParamInitializer |
initializer() |
Layer |
instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
org.nd4j.linalg.api.buffer.DataType networkDataType) |
boolean |
isPretrainParam(String paramName)
Is the specified parameter a layerwise pretraining only parameter?
For example, visible bias params in an autoencoder (or, decoder params in a variational autoencoder) aren't used during supervised backprop. Layers (like DenseLayer, etc) with no pretrainable parameters will return false for all (valid) inputs. |
getPreProcessorForInputType, setNIn
getGradientNormalization, getRegularizationByParam, getUpdaterByParam, resetLayerDefaultConfig
initializeConstraints, setDataType
equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
getGradientNormalizationThreshold, getLayerName
protected RepeatVector(RepeatVector.Builder builder)
public RepeatVector clone()
public ParamInitializer initializer()
initializer
in class Layer
public Layer instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, org.nd4j.linalg.api.buffer.DataType networkDataType)
instantiate
in class Layer
public InputType getOutputType(int layerIndex, InputType inputType)
Layer
getOutputType
in class FeedForwardLayer
layerIndex
- Index of the layerinputType
- Type of input for the layerpublic LayerMemoryReport getMemoryReport(InputType inputType)
Layer
getMemoryReport
in class Layer
inputType
- Input type to the layer. Memory consumption is often a function of the input
typepublic boolean isPretrainParam(String paramName)
Layer
isPretrainParam
in interface TrainingConfig
isPretrainParam
in class FeedForwardLayer
paramName
- Parameter name/keyCopyright © 2019. All rights reserved.