public class Yolo2OutputLayer extends Layer
Modifier and Type | Class and Description |
---|---|
static class |
Yolo2OutputLayer.Builder |
constraints, iDropout, layerName
Modifier and Type | Method and Description |
---|---|
GradientNormalization |
getGradientNormalization() |
double |
getGradientNormalizationThreshold() |
LayerMemoryReport |
getMemoryReport(InputType inputType)
This is a report of the estimated memory consumption for the given layer
|
InputType |
getOutputType(int layerIndex,
InputType inputType)
For a given type of input to this layer, what is the type of the output?
|
InputPreProcessor |
getPreProcessorForInputType(InputType inputType)
For the given type of input to this layer, what preprocessor (if any) is required?
Returns null if no preprocessor is required, otherwise returns an appropriate InputPreProcessor for this layer, such as a CnnToFeedForwardPreProcessor |
List<Regularization> |
getRegularizationByParam(String paramName)
Get the regularization types (l1/l2/weight decay) for the given parameter.
|
ParamInitializer |
initializer() |
Layer |
instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
org.nd4j.linalg.api.buffer.DataType networkDataType) |
boolean |
isPretrainParam(String paramName)
Is the specified parameter a layerwise pretraining only parameter?
For example, visible bias params in an autoencoder (or, decoder params in a variational autoencoder) aren't used during supervised backprop. Layers (like DenseLayer, etc) with no pretrainable parameters will return false for all (valid) inputs. |
void |
setNIn(InputType inputType,
boolean override)
Set the nIn value (number of inputs, or input channels for CNNs) based on the given input
type
|
clone, getUpdaterByParam, initializeConstraints, resetLayerDefaultConfig, setDataType
equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
getLayerName
public Layer instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, org.nd4j.linalg.api.buffer.DataType networkDataType)
instantiate
in class Layer
public ParamInitializer initializer()
initializer
in class Layer
public InputType getOutputType(int layerIndex, InputType inputType)
Layer
getOutputType
in class Layer
layerIndex
- Index of the layerinputType
- Type of input for the layerpublic void setNIn(InputType inputType, boolean override)
Layer
public InputPreProcessor getPreProcessorForInputType(InputType inputType)
Layer
InputPreProcessor
for this layer, such as a CnnToFeedForwardPreProcessor
getPreProcessorForInputType
in class Layer
inputType
- InputType to this layerpublic List<Regularization> getRegularizationByParam(String paramName)
Layer
getRegularizationByParam
in interface TrainingConfig
getRegularizationByParam
in class Layer
paramName
- Parameter name ("W", "b" etc)public boolean isPretrainParam(String paramName)
Layer
isPretrainParam
in interface TrainingConfig
isPretrainParam
in class Layer
paramName
- Parameter name/keypublic GradientNormalization getGradientNormalization()
public double getGradientNormalizationThreshold()
public LayerMemoryReport getMemoryReport(InputType inputType)
Layer
getMemoryReport
in class Layer
inputType
- Input type to the layer. Memory consumption is often a function of the input
typeCopyright © 2019. All rights reserved.