public class Bidirectional extends Layer
Bidirectional.Mode javadoc for more details..layer(new Bidirectional(new LSTM.Builder()....build())| Modifier and Type | Class and Description |
|---|---|
static class |
Bidirectional.Builder |
static class |
Bidirectional.Mode
This Mode enumeration defines how the activations for the forward and backward networks should be combined.
ADD: out = forward + backward (elementwise addition) MUL: out = forward * backward (elementwise multiplication) AVERAGE: out = 0.5 * (forward + backward) CONCAT: Concatenate the activations. Where 'forward' is the activations for the forward RNN, and 'backward' is the activations for the backward RNN. |
constraints, iDropout, layerName| Constructor and Description |
|---|
Bidirectional(Bidirectional.Mode mode,
Layer layer)
Create a Bidirectional wrapper for the specified layer
|
Bidirectional(Layer layer)
Create a Bidirectional wrapper, with the default Mode (CONCAT) for the specified layer
|
| Modifier and Type | Method and Description |
|---|---|
GradientNormalization |
getGradientNormalization() |
double |
getGradientNormalizationThreshold() |
LayerMemoryReport |
getMemoryReport(InputType inputType)
This is a report of the estimated memory consumption for the given layer
|
long |
getNIn() |
long |
getNOut() |
InputType |
getOutputType(int layerIndex,
InputType inputType)
For a given type of input to this layer, what is the type of the output?
|
InputPreProcessor |
getPreProcessorForInputType(InputType inputType)
For the given type of input to this layer, what preprocessor (if any) is required?
Returns null if no preprocessor is required, otherwise returns an appropriate InputPreProcessor for this layer, such as a CnnToFeedForwardPreProcessor |
List<Regularization> |
getRegularizationByParam(String paramName)
Get the regularization types (l1/l2/weight decay) for the given parameter.
|
IUpdater |
getUpdaterByParam(String paramName)
Get the updater for the given parameter.
|
ParamInitializer |
initializer() |
Layer |
instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
org.nd4j.linalg.api.buffer.DataType networkDataType) |
boolean |
isPretrainParam(String paramName)
Is the specified parameter a layerwise pretraining only parameter?
For example, visible bias params in an autoencoder (or, decoder params in a variational autoencoder) aren't used during supervised backprop. Layers (like DenseLayer, etc) with no pretrainable parameters will return false for all (valid) inputs. |
void |
setLayerName(String layerName) |
void |
setNIn(InputType inputType,
boolean override)
Set the nIn value (number of inputs, or input channels for CNNs) based on the given input
type
|
clone, initializeConstraints, resetLayerDefaultConfig, setDataTypeequals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitgetLayerNamepublic Bidirectional(@NonNull
Layer layer)
layer - layer to wrappublic Bidirectional(@NonNull
Bidirectional.Mode mode,
@NonNull
Layer layer)
mode - Mode to use to combine activations. See Bidirectional.Mode for detailslayer - layer to wrappublic long getNOut()
public long getNIn()
public Layer instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, org.nd4j.linalg.api.buffer.DataType networkDataType)
instantiate in class Layerpublic ParamInitializer initializer()
initializer in class Layerpublic InputType getOutputType(int layerIndex, InputType inputType)
LayergetOutputType in class LayerlayerIndex - Index of the layerinputType - Type of input for the layerpublic void setNIn(InputType inputType, boolean override)
Layerpublic InputPreProcessor getPreProcessorForInputType(InputType inputType)
LayerInputPreProcessor for this layer, such as a CnnToFeedForwardPreProcessorgetPreProcessorForInputType in class LayerinputType - InputType to this layerpublic List<Regularization> getRegularizationByParam(String paramName)
LayergetRegularizationByParam in interface TrainingConfiggetRegularizationByParam in class LayerparamName - Parameter name ("W", "b" etc)public boolean isPretrainParam(String paramName)
LayerisPretrainParam in interface TrainingConfigisPretrainParam in class LayerparamName - Parameter name/keypublic IUpdater getUpdaterByParam(String paramName)
getUpdaterByParam in interface TrainingConfiggetUpdaterByParam in class LayerparamName - Parameter namepublic GradientNormalization getGradientNormalization()
public double getGradientNormalizationThreshold()
public void setLayerName(String layerName)
public LayerMemoryReport getMemoryReport(InputType inputType)
LayergetMemoryReport in class LayerinputType - Input type to the layer. Memory consumption is often a function of the input
typeCopyright © 2019. All rights reserved.