public class Convolution3DLayer extends ConvolutionLayer
Layer.TrainingMode, Layer.TypeconvolutionMode, dummyBias, dummyBiasGrad, helper, helperCountFail, i2d, loggradient, gradientsFlattened, gradientViews, optimizer, params, paramsFlattened, score, solver, weightNoiseParamscacheMode, conf, dataType, dropoutApplied, epochCount, index, input, inputModificationAllowed, iterationCount, maskArray, maskState, preOutput, trainingListeners| Constructor and Description |
|---|
Convolution3DLayer(NeuralNetConfiguration conf,
org.nd4j.linalg.api.buffer.DataType dataType) |
| Modifier and Type | Method and Description |
|---|---|
Pair<Gradient,INDArray> |
backpropGradient(INDArray epsilon,
LayerWorkspaceMgr workspaceMgr)
Calculate the gradient relative to the error in the next layer
|
protected Pair<INDArray,INDArray> |
preOutput(boolean training,
boolean forBackprop,
LayerWorkspaceMgr workspaceMgr)
PreOutput method that also returns the im2col2d array (if being called for backprop), as this can be re-used
instead of being calculated again.
|
INDArray |
preOutput(boolean training,
LayerWorkspaceMgr workspaceMgr) |
activate, feedForwardMaskArray, fit, getHelper, hasBias, isPretrainLayer, preOutput4d, setParams, type, validateInputDepth, validateInputRankcalcRegularizationScore, clear, clearNoiseWeightParams, clone, computeGradientAndScore, fit, getGradientsViewArray, getOptimizer, getParam, getParamWithNoise, gradient, hasLayerNorm, layerConf, numParams, params, paramTable, paramTable, preOutputWithPreNorm, score, setBackpropGradientsViewArray, setParam, setParams, setParamsViewArray, setParamTable, setScoreWithZ, toString, update, updateactivate, addListeners, allowInputModification, applyConstraints, applyDropOutIfNecessary, applyMask, assertInputSet, backpropDropOutIfPresent, batchSize, conf, getConfig, getEpochCount, getIndex, getInput, getInputMiniBatchSize, getListeners, getMaskArray, gradientAndScore, init, input, layerId, numParams, setCacheMode, setConf, setEpochCount, setIndex, setInput, setInputMiniBatchSize, setListeners, setListeners, setMaskArray, updaterDivideByMinibatchequals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, waitgetIterationCount, setIterationCountpublic Convolution3DLayer(NeuralNetConfiguration conf, org.nd4j.linalg.api.buffer.DataType dataType)
public Pair<Gradient,INDArray> backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
LayerbackpropGradient in interface LayerbackpropGradient in class ConvolutionLayerepsilon - w^(L+1)*delta^(L+1). Or, equiv: dC/da, i.e., (dC/dz)*(dz/da) = dC/da, where C
is cost function a=sigma(z) is activation.workspaceMgr - Workspace managerArrayType.ACTIVATION_GRAD workspace via the workspace managerpublic INDArray preOutput(boolean training, LayerWorkspaceMgr workspaceMgr)
preOutput in class BaseLayer<ConvolutionLayer>protected Pair<INDArray,INDArray> preOutput(boolean training, boolean forBackprop, LayerWorkspaceMgr workspaceMgr)
ConvolutionLayerpreOutput in class ConvolutionLayertraining - Train or test time (impacts dropout)forBackprop - If true: return the im2col2d array for re-use during backprop. False: return null for second
pair entry. Note that it may still be null in the case of CuDNN and the like.Copyright © 2019. All rights reserved.