public abstract static class ConvolutionLayer.BaseConvBuilder<T extends ConvolutionLayer.BaseConvBuilder<T>> extends FeedForwardLayer.Builder<T>
| Modifier and Type | Field and Description |
|---|---|
protected int |
convolutionDim |
protected ConvolutionMode |
convolutionMode
Set the convolution mode for the Convolution layer.
|
protected ConvolutionLayer.AlgoMode |
cudnnAlgoMode
Defaults to "PREFER_FASTEST", but "NO_WORKSPACE" uses less memory.
|
protected boolean |
cudnnAllowFallback
When using CuDNN and an error is encountered, should fallback to the non-CuDNN implementatation be allowed?
If set to false, an exception in CuDNN will be propagated back to the user.
|
protected ConvolutionLayer.BwdDataAlgo |
cudnnBwdDataAlgo |
protected ConvolutionLayer.BwdFilterAlgo |
cudnnBwdFilterAlgo |
protected ConvolutionLayer.FwdAlgo |
cudnnFwdAlgo |
protected int[] |
dilation
Kernel dilation.
|
protected boolean |
hasBias
If true (default): include bias parameters in the model.
|
int[] |
kernelSize |
protected int[] |
padding |
protected int[] |
stride |
nIn, nOutactivationFn, biasInit, biasUpdater, gainInit, gradientNormalization, gradientNormalizationThreshold, iupdater, regularization, regularizationBias, weightInitFn, weightNoiseallParamConstraints, biasConstraints, iDropout, layerName, weightConstraints| Modifier | Constructor and Description |
|---|---|
protected |
BaseConvBuilder() |
protected |
BaseConvBuilder(int... kernelSize) |
protected |
BaseConvBuilder(int[] kernelSize,
int[] stride) |
protected |
BaseConvBuilder(int[] kernelSize,
int[] stride,
int dim) |
protected |
BaseConvBuilder(int[] kernelSize,
int[] stride,
int[] padding) |
protected |
BaseConvBuilder(int[] kernelSize,
int[] stride,
int[] padding,
int dim) |
protected |
BaseConvBuilder(int[] kernelSize,
int[] stride,
int[] padding,
int[] dilation) |
protected |
BaseConvBuilder(int[] kernelSize,
int[] stride,
int[] padding,
int[] dilation,
int dim) |
protected |
BaseConvBuilder(int dim,
int... kernelSize) |
| Modifier and Type | Method and Description |
|---|---|
protected abstract boolean |
allowCausal() |
T |
convolutionMode(ConvolutionMode convolutionMode)
Set the convolution mode for the Convolution layer.
|
T |
cudnnAlgoMode(ConvolutionLayer.AlgoMode cudnnAlgoMode)
Defaults to "PREFER_FASTEST", but "NO_WORKSPACE" uses less memory.
|
T |
cudnnAllowFallback(boolean allowFallback)
Deprecated.
|
T |
cudnnBwdDataMode(ConvolutionLayer.BwdDataAlgo cudnnBwdDataAlgo) |
T |
cudnnBwdFilterMode(ConvolutionLayer.BwdFilterAlgo cudnnBwdFilterAlgo) |
T |
cudnnFwdMode(ConvolutionLayer.FwdAlgo cudnnFwdAlgo) |
T |
dilation(int... dilation)
Kernel dilation.
|
T |
hasBias(boolean hasBias)
If true (default): include bias parameters in the model.
|
T |
helperAllowFallback(boolean allowFallback)
When using CuDNN or MKLDNN and an error is encountered, should fallback to the non-helper implementation be allowed?
If set to false, an exception in the helper will be propagated back to the user.
|
T |
kernelSize(int... kernelSize) |
T |
padding(int... padding) |
protected void |
setConvolutionMode(ConvolutionMode convolutionMode) |
T |
stride(int... stride) |
nIn, nIn, nOut, nOut, unitsactivation, activation, biasInit, biasUpdater, dist, gainInit, gradientNormalization, gradientNormalizationThreshold, l1, l1Bias, l2, l2Bias, regularization, regularizationBias, updater, updater, weightDecay, weightDecay, weightDecayBias, weightDecayBias, weightInit, weightInit, weightInit, weightNoisebuild, constrainAllParameters, constrainBias, constrainWeights, dropOut, dropOut, nameprotected int convolutionDim
protected boolean hasBias
protected ConvolutionMode convolutionMode
ConvolutionMode for more detailsprotected int[] dilation
For more details, see:
Yu and Koltun (2014) and
Chen et al. (2014), as well as
http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html#dilated-convolutions
public int[] kernelSize
protected int[] stride
protected int[] padding
protected ConvolutionLayer.AlgoMode cudnnAlgoMode
protected ConvolutionLayer.FwdAlgo cudnnFwdAlgo
protected ConvolutionLayer.BwdFilterAlgo cudnnBwdFilterAlgo
protected ConvolutionLayer.BwdDataAlgo cudnnBwdDataAlgo
protected boolean cudnnAllowFallback
protected BaseConvBuilder(int[] kernelSize,
int[] stride,
int[] padding,
int[] dilation,
int dim)
protected BaseConvBuilder(int[] kernelSize,
int[] stride,
int[] padding,
int[] dilation)
protected BaseConvBuilder(int[] kernelSize,
int[] stride,
int[] padding,
int dim)
protected BaseConvBuilder(int[] kernelSize,
int[] stride,
int[] padding)
protected BaseConvBuilder(int[] kernelSize,
int[] stride,
int dim)
protected BaseConvBuilder(int[] kernelSize,
int[] stride)
protected BaseConvBuilder(int dim,
int... kernelSize)
protected BaseConvBuilder(int... kernelSize)
protected BaseConvBuilder()
protected abstract boolean allowCausal()
protected void setConvolutionMode(ConvolutionMode convolutionMode)
public T hasBias(boolean hasBias)
hasBias - If true: include bias parameters in this modelpublic T convolutionMode(ConvolutionMode convolutionMode)
ConvolutionMode for more detailsconvolutionMode - Convolution mode for layerpublic T dilation(int... dilation)
For more details, see:
Yu and Koltun (2014) and
Chen et al. (2014), as well as
http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html#dilated-convolutions
dilation - Dilation for kernelpublic T kernelSize(int... kernelSize)
public T stride(int... stride)
public T padding(int... padding)
public T cudnnAlgoMode(ConvolutionLayer.AlgoMode cudnnAlgoMode)
public T cudnnFwdMode(ConvolutionLayer.FwdAlgo cudnnFwdAlgo)
public T cudnnBwdFilterMode(ConvolutionLayer.BwdFilterAlgo cudnnBwdFilterAlgo)
public T cudnnBwdDataMode(ConvolutionLayer.BwdDataAlgo cudnnBwdDataAlgo)
@Deprecated public T cudnnAllowFallback(boolean allowFallback)
helperAllowFallback(boolean)allowFallback - Whether fallback to non-CuDNN implementation should be usedpublic T helperAllowFallback(boolean allowFallback)
allowFallback - Whether fallback to non-CuDNN implementation should be usedCopyright © 2020. All rights reserved.