public class MpscCompoundQueue<E> extends AbstractQueue<E>
MessagePassingQueue.Consumer<T>, MessagePassingQueue.ExitCondition, MessagePassingQueue.Supplier<T>, MessagePassingQueue.WaitStrategy
Modifier and Type | Field and Description |
---|---|
protected int |
parallelQueues |
protected int |
parallelQueuesMask |
protected MpscArrayQueue<E>[] |
queues |
UNBOUNDED_CAPACITY
Constructor and Description |
---|
MpscCompoundQueue(int capacity) |
MpscCompoundQueue(int capacity,
int queueParallelism) |
Modifier and Type | Method and Description |
---|---|
int |
capacity() |
int |
drain(MessagePassingQueue.Consumer<E> c)
Remove all available item from the queue and hand to consume.
|
int |
drain(MessagePassingQueue.Consumer<E> c,
int limit)
Remove up to limit elements from the queue and hand to consume.
|
void |
drain(MessagePassingQueue.Consumer<E> c,
MessagePassingQueue.WaitStrategy wait,
MessagePassingQueue.ExitCondition exit)
Remove elements from the queue and hand to consume forever.
|
int |
fill(MessagePassingQueue.Supplier<E> s)
Stuff the queue with elements from the supplier.
|
int |
fill(MessagePassingQueue.Supplier<E> s,
int limit)
Stuff the queue with up to limit elements from the supplier.
|
void |
fill(MessagePassingQueue.Supplier<E> s,
MessagePassingQueue.WaitStrategy wait,
MessagePassingQueue.ExitCondition exit)
Stuff the queue with elements from the supplier forever.
|
Iterator<E> |
iterator() |
boolean |
offer(E e)
Called from a producer thread subject to the restrictions appropriate to the implementation and
according to the
Queue.offer(Object) interface. |
E |
peek()
Called from the consumer thread subject to the restrictions appropriate to the implementation and
according to the
Queue.peek() interface. |
E |
poll()
Called from the consumer thread subject to the restrictions appropriate to the implementation and
according to the
Queue.poll() interface. |
boolean |
relaxedOffer(E e)
Called from a producer thread subject to the restrictions appropriate to the implementation.
|
E |
relaxedPeek()
Called from the consumer thread subject to the restrictions appropriate to the implementation.
|
E |
relaxedPoll()
Called from the consumer thread subject to the restrictions appropriate to the implementation.
|
int |
size()
This method's accuracy is subject to concurrent modifications happening as the size is estimated and as
such is a best effort rather than absolute value.
|
String |
toString() |
contains, containsAll, isEmpty, remove, removeAll, retainAll, toArray, toArray
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
clear, isEmpty
contains, containsAll, equals, hashCode, isEmpty, parallelStream, remove, removeAll, removeIf, retainAll, spliterator, stream, toArray, toArray
protected final int parallelQueues
protected final int parallelQueuesMask
protected final MpscArrayQueue<E>[] queues
public MpscCompoundQueue(int capacity)
public MpscCompoundQueue(int capacity, int queueParallelism)
public boolean offer(E e)
MessagePassingQueue
Queue.offer(Object)
interface.e
- not null
, will throw NPE if it ispublic E poll()
MessagePassingQueue
Queue.poll()
interface.null
iff emptypublic E peek()
MessagePassingQueue
Queue.peek()
interface.null
iff emptypublic int size()
MessagePassingQueue
size
in interface Collection<E>
size
in interface MessagePassingQueue<E>
size
in class AbstractCollection<E>
Integer.MAX_VALUE
but less or equals to
capacity (if bounded).public Iterator<E> iterator()
iterator
in interface Iterable<E>
iterator
in interface Collection<E>
iterator
in class AbstractCollection<E>
public String toString()
toString
in class AbstractCollection<E>
public boolean relaxedOffer(E e)
MessagePassingQueue
Queue.offer(Object)
this method may return false without the queue being full.e
- not null
, will throw NPE if it ispublic E relaxedPoll()
MessagePassingQueue
Queue.poll()
this method may return null
without the queue being empty.null
if unable to pollpublic E relaxedPeek()
MessagePassingQueue
Queue.peek()
this method may return null
without the queue being empty.null
if unable to peekpublic int capacity()
MessagePassingQueue.UNBOUNDED_CAPACITY
if not boundedpublic int drain(MessagePassingQueue.Consumer<E> c)
MessagePassingQueue
M m; while((m = relaxedPoll()) != null){ c.accept(m); }There's no strong commitment to the queue being empty at the end of a drain. Called from a consumer thread subject to the restrictions appropriate to the implementation.
WARNING: Explicit assumptions are made with regards to MessagePassingQueue.Consumer.accept(T)
make sure you have read
and understood these before using this method.
public int fill(MessagePassingQueue.Supplier<E> s)
MessagePassingQueue
while(relaxedOffer(s.get());There's no strong commitment to the queue being full at the end of a fill. Called from a producer thread subject to the restrictions appropriate to the implementation.
Unbounded queues will fill up the queue with a fixed amount rather than fill up to oblivion.
WARNING: Explicit assumptions are made with regards to MessagePassingQueue.Supplier.get()
make sure you have read
and understood these before using this method.
public int drain(MessagePassingQueue.Consumer<E> c, int limit)
MessagePassingQueue
M m;
int i = 0;
for(;i < limit && (m = relaxedPoll()) != null; i++){
c.accept(m);
}
return i;
There's no strong commitment to the queue being empty at the end of a drain. Called from a consumer thread subject to the restrictions appropriate to the implementation.
WARNING: Explicit assumptions are made with regards to MessagePassingQueue.Consumer.accept(T)
make sure you have read
and understood these before using this method.
public int fill(MessagePassingQueue.Supplier<E> s, int limit)
MessagePassingQueue
for(int i=0; i < limit && relaxedOffer(s.get()); i++);
There's no strong commitment to the queue being full at the end of a fill. Called from a producer
thread subject to the restrictions appropriate to the implementation.
WARNING: Explicit assumptions are made with regards to MessagePassingQueue.Supplier.get()
make sure you have read
and understood these before using this method.
public void drain(MessagePassingQueue.Consumer<E> c, MessagePassingQueue.WaitStrategy wait, MessagePassingQueue.ExitCondition exit)
MessagePassingQueue
int idleCounter = 0; while (exit.keepRunning()) { E e = relaxedPoll(); if(e==null){ idleCounter = wait.idle(idleCounter); continue; } idleCounter = 0; c.accept(e); }
Called from a consumer thread subject to the restrictions appropriate to the implementation.
WARNING: Explicit assumptions are made with regards to MessagePassingQueue.Consumer.accept(T)
make sure you have read
and understood these before using this method.
public void fill(MessagePassingQueue.Supplier<E> s, MessagePassingQueue.WaitStrategy wait, MessagePassingQueue.ExitCondition exit)
MessagePassingQueue
int idleCounter = 0;
while (exit.keepRunning()) {
E e = s.get();
while (!relaxedOffer(e)) {
idleCounter = wait.idle(idleCounter);
continue;
}
idleCounter = 0;
}
Called from a producer thread subject to the restrictions appropriate to the implementation. The main difference
being that implementors MUST assure room in the queue is available BEFORE calling MessagePassingQueue.Supplier.get()
.
WARNING: Explicit assumptions are made with regards to MessagePassingQueue.Supplier.get()
make sure you have read
and understood these before using this method.
Copyright © 2013–2020. All rights reserved.