Modifier and Type | Method and Description |
---|---|
static void |
BufferReaper.destroy(INDArray... arrs)
Frees data used by the given ndarrays
|
Constructor and Description |
---|
BufferReaper(ReferenceQueue<INDArray> queue,
ReferenceQueue<DataBuffer> buffer) |
BufferReaper(Runnable target,
ReferenceQueue<INDArray> queue,
ReferenceQueue<DataBuffer> buffer) |
BufferReaper(Runnable target,
String name,
ReferenceQueue<INDArray> queue,
ReferenceQueue<DataBuffer> buffer) |
BufferReaper(String name,
ReferenceQueue<INDArray> queue,
ReferenceQueue<DataBuffer> buffer) |
BufferReaper(ThreadGroup group,
Runnable target,
ReferenceQueue<INDArray> queue,
ReferenceQueue<DataBuffer> buffer) |
BufferReaper(ThreadGroup group,
Runnable target,
String name,
long stackSize,
ReferenceQueue<INDArray> queue,
ReferenceQueue<DataBuffer> buffer) |
BufferReaper(ThreadGroup group,
Runnable target,
String name,
ReferenceQueue<INDArray> queue,
ReferenceQueue<DataBuffer> buffer) |
BufferReaper(ThreadGroup group,
String name,
ReferenceQueue<INDArray> queue,
ReferenceQueue<DataBuffer> buffer) |
Modifier and Type | Interface and Description |
---|---|
interface |
IComplexNDArray
Complex numbers
|
Modifier and Type | Class and Description |
---|---|
class |
BaseComplexNDArray
ComplexNDArray for complex numbers.
|
class |
LinearViewComplexNDArray
Row vector view of an ndarray
|
Modifier and Type | Method and Description |
---|---|
INDArray |
BaseComplexNDArray.assign(INDArray arr)
Assign all of the elements in the given
ndarray to this nedarray
|
protected INDArray |
BaseComplexNDArray.create(int[] shape,
char ordering) |
INDArray |
BaseComplexNDArray.getReal() |
INDArray |
IComplexNDArray.getReal()
Gets the real portion of this complex ndarray
|
INDArray |
BaseComplexNDArray.imag()
Get imaginary part of the matrix.
|
INDArray |
IComplexNDArray.imag() |
INDArray |
BaseComplexNDArray.putScalar(int[] i,
double value) |
INDArray |
IComplexNDArray.putScalar(int[] i,
IComplexNumber complexNumber) |
INDArray |
BaseComplexNDArray.real()
Get realComponent part of the matrix.
|
INDArray |
IComplexNDArray.real() |
Modifier and Type | Method and Description |
---|---|
IComplexNDArray |
BaseComplexNDArray.add(IComplexNumber n,
INDArray result) |
IComplexNDArray |
IComplexNDArray.add(IComplexNumber n,
INDArray result) |
IComplexNDArray |
BaseComplexNDArray.add(INDArray other)
copy addition of two matrices
|
IComplexNDArray |
IComplexNDArray.add(INDArray other)
copy addition of two matrices
|
IComplexNDArray |
BaseComplexNDArray.add(INDArray other,
INDArray result)
copy addition of two matrices
|
IComplexNDArray |
IComplexNDArray.add(INDArray other,
INDArray result)
copy addition of two matrices
|
IComplexNDArray |
BaseComplexNDArray.add(Number n,
INDArray result) |
IComplexNDArray |
IComplexNDArray.add(Number n,
INDArray result) |
IComplexNDArray |
BaseComplexNDArray.addColumnVector(INDArray columnVector)
In place addition of a column vector
|
IComplexNDArray |
IComplexNDArray.addColumnVector(INDArray columnVector)
In place addition of a column vector
|
IComplexNDArray |
BaseComplexNDArray.addi(IComplexNumber n,
INDArray result) |
IComplexNDArray |
IComplexNDArray.addi(IComplexNumber n,
INDArray result) |
IComplexNDArray |
BaseComplexNDArray.addi(INDArray other)
in place addition of two matrices
|
IComplexNDArray |
IComplexNDArray.addi(INDArray other)
in place addition of two matrices
|
IComplexNDArray |
BaseComplexNDArray.addi(INDArray other,
INDArray result)
in place addition of two matrices
|
IComplexNDArray |
IComplexNDArray.addi(INDArray other,
INDArray result)
in place addition of two matrices
|
IComplexNDArray |
BaseComplexNDArray.addi(Number n,
INDArray result) |
IComplexNDArray |
IComplexNDArray.addi(Number n,
INDArray result) |
IComplexNDArray |
BaseComplexNDArray.addiColumnVector(INDArray columnVector)
In place addition of a column vector
|
IComplexNDArray |
IComplexNDArray.addiColumnVector(INDArray columnVector)
In place addition of a column vector
|
IComplexNDArray |
BaseComplexNDArray.addiRowVector(INDArray rowVector)
In place addition of a column vector
|
IComplexNDArray |
IComplexNDArray.addiRowVector(INDArray rowVector)
In place addition of a column vector
|
IComplexNDArray |
BaseComplexNDArray.addRowVector(INDArray rowVector)
In place addition of a column vector
|
IComplexNDArray |
IComplexNDArray.addRowVector(INDArray rowVector)
In place addition of a column vector
|
INDArray |
BaseComplexNDArray.assign(INDArray arr)
Assign all of the elements in the given
ndarray to this nedarray
|
void |
BaseComplexNDArray.checkDimensions(INDArray other)
Validate dimensions are equal
|
void |
IComplexNDArray.checkDimensions(INDArray other)
Validate dimensions are equal
|
protected void |
LinearViewComplexNDArray.collectRows(INDArray slice) |
protected void |
BaseComplexNDArray.copyFromReal(INDArray real) |
protected void |
BaseComplexNDArray.copyRealTo(INDArray arr) |
protected IComplexNDArray |
BaseComplexNDArray.create(INDArray baseNDArray) |
double |
BaseComplexNDArray.distance1(INDArray other)
Returns the (1-norm) distance.
|
double |
BaseComplexNDArray.distance2(INDArray other)
Returns the (euclidean) distance.
|
IComplexNDArray |
BaseComplexNDArray.div(IComplexNumber n,
INDArray result) |
IComplexNDArray |
IComplexNDArray.div(IComplexNumber n,
INDArray result) |
IComplexNDArray |
BaseComplexNDArray.div(INDArray other)
in place (element wise) division of two matrices
|
IComplexNDArray |
IComplexNDArray.div(INDArray other)
in place (element wise) division of two matrices
|
IComplexNDArray |
BaseComplexNDArray.div(INDArray other,
INDArray result)
copy (element wise) division of two matrices
|
IComplexNDArray |
IComplexNDArray.div(INDArray other,
INDArray result)
copy (element wise) division of two matrices
|
IComplexNDArray |
BaseComplexNDArray.div(Number n,
INDArray result) |
IComplexNDArray |
IComplexNDArray.div(Number n,
INDArray result) |
IComplexNDArray |
BaseComplexNDArray.divColumnVector(INDArray columnVector)
In place addition of a column vector
|
IComplexNDArray |
IComplexNDArray.divColumnVector(INDArray columnVector)
In place addition of a column vector
|
IComplexNDArray |
BaseComplexNDArray.divi(IComplexNumber n,
INDArray result) |
IComplexNDArray |
IComplexNDArray.divi(IComplexNumber n,
INDArray result) |
IComplexNDArray |
BaseComplexNDArray.divi(INDArray other)
in place (element wise) division of two matrices
|
IComplexNDArray |
IComplexNDArray.divi(INDArray other)
in place (element wise) division of two matrices
|
IComplexNDArray |
BaseComplexNDArray.divi(INDArray other,
INDArray result)
in place (element wise) division of two matrices
|
IComplexNDArray |
IComplexNDArray.divi(INDArray other,
INDArray result)
in place (element wise) division of two matrices
|
IComplexNDArray |
BaseComplexNDArray.divi(Number n,
INDArray result) |
IComplexNDArray |
IComplexNDArray.divi(Number n,
INDArray result) |
IComplexNDArray |
BaseComplexNDArray.diviColumnVector(INDArray columnVector)
In place addition of a column vector
|
IComplexNDArray |
IComplexNDArray.diviColumnVector(INDArray columnVector)
In place addition of a column vector
|
IComplexNDArray |
BaseComplexNDArray.diviRowVector(INDArray rowVector)
In place addition of a column vector
|
IComplexNDArray |
IComplexNDArray.diviRowVector(INDArray rowVector)
In place addition of a column vector
|
IComplexNDArray |
BaseComplexNDArray.divRowVector(INDArray rowVector)
In place addition of a column vector
|
IComplexNDArray |
IComplexNDArray.divRowVector(INDArray rowVector)
In place addition of a column vector
|
protected IComplexNDArray |
BaseComplexNDArray.doColumnWise(INDArray columnVector,
char operation) |
protected IComplexNDArray |
BaseComplexNDArray.doRowWise(INDArray rowVector,
char operation) |
IComplexNDArray |
BaseComplexNDArray.eps(INDArray other)
epsilon equals than comparison:
If the given number is less than the
comparison number the item is 0 otherwise 1
|
IComplexNDArray |
IComplexNDArray.eps(INDArray other)
epsilon equals than comparison:
If the given number is less than the
comparison number the item is 0 otherwise 1
|
IComplexNDArray |
BaseComplexNDArray.epsi(INDArray other)
In place epsilon equals than comparison:
If the given number is less than the
comparison number the item is 0 otherwise 1
|
IComplexNDArray |
IComplexNDArray.epsi(INDArray other)
In place epsilon equals than comparison:
If the given number is less than the
comparison number the item is 0 otherwise 1
|
IComplexNDArray |
BaseComplexNDArray.eq(INDArray other) |
IComplexNDArray |
IComplexNDArray.eq(INDArray other) |
IComplexNDArray |
BaseComplexNDArray.eqi(INDArray other) |
IComplexNDArray |
IComplexNDArray.eqi(INDArray other) |
IComplexNDArray |
BaseComplexNDArray.gt(INDArray other) |
IComplexNDArray |
IComplexNDArray.gt(INDArray other) |
IComplexNDArray |
BaseComplexNDArray.gti(INDArray other) |
IComplexNDArray |
IComplexNDArray.gti(INDArray other) |
IComplexNDArray |
BaseComplexNDArray.lt(INDArray other) |
IComplexNDArray |
IComplexNDArray.lt(INDArray other) |
IComplexNDArray |
BaseComplexNDArray.lti(INDArray other) |
IComplexNDArray |
IComplexNDArray.lti(INDArray other) |
IComplexNDArray |
BaseComplexNDArray.mmul(INDArray other)
Perform a copy matrix multiplication
|
IComplexNDArray |
IComplexNDArray.mmul(INDArray other)
Perform a copy matrix multiplication
|
IComplexNDArray |
BaseComplexNDArray.mmul(INDArray other,
INDArray result)
Perform an copy matrix multiplication
|
IComplexNDArray |
IComplexNDArray.mmul(INDArray other,
INDArray result)
Perform an copy matrix multiplication
|
IComplexNDArray |
BaseComplexNDArray.mmuli(INDArray other)
Perform an copy matrix multiplication
|
IComplexNDArray |
IComplexNDArray.mmuli(INDArray other)
Perform an copy matrix multiplication
|
IComplexNDArray |
BaseComplexNDArray.mmuli(INDArray other,
INDArray result)
Perform an copy matrix multiplication
|
IComplexNDArray |
IComplexNDArray.mmuli(INDArray other,
INDArray result)
Perform an copy matrix multiplication
|
IComplexNDArray |
BaseComplexNDArray.mul(IComplexNumber n,
INDArray result) |
IComplexNDArray |
IComplexNDArray.mul(IComplexNumber n,
INDArray result) |
IComplexNDArray |
BaseComplexNDArray.mul(INDArray other)
copy (element wise) multiplication of two matrices
|
IComplexNDArray |
IComplexNDArray.mul(INDArray other)
copy (element wise) multiplication of two matrices
|
IComplexNDArray |
BaseComplexNDArray.mul(INDArray other,
INDArray result)
copy (element wise) multiplication of two matrices
|
IComplexNDArray |
IComplexNDArray.mul(INDArray other,
INDArray result)
copy (element wise) multiplication of two matrices
|
IComplexNDArray |
BaseComplexNDArray.mul(Number n,
INDArray result) |
IComplexNDArray |
IComplexNDArray.mul(Number n,
INDArray result) |
IComplexNDArray |
BaseComplexNDArray.mulColumnVector(INDArray columnVector)
In place addition of a column vector
|
IComplexNDArray |
IComplexNDArray.mulColumnVector(INDArray columnVector)
In place addition of a column vector
|
IComplexNDArray |
BaseComplexNDArray.muli(IComplexNumber n,
INDArray result) |
IComplexNDArray |
IComplexNDArray.muli(IComplexNumber n,
INDArray result) |
IComplexNDArray |
BaseComplexNDArray.muli(INDArray other)
in place (element wise) multiplication of two matrices
|
IComplexNDArray |
IComplexNDArray.muli(INDArray other)
in place (element wise) multiplication of two matrices
|
IComplexNDArray |
BaseComplexNDArray.muli(INDArray other,
INDArray result)
in place (element wise) multiplication of two matrices
|
IComplexNDArray |
IComplexNDArray.muli(INDArray other,
INDArray result)
in place (element wise) multiplication of two matrices
|
IComplexNDArray |
BaseComplexNDArray.muli(Number n,
INDArray result) |
IComplexNDArray |
IComplexNDArray.muli(Number n,
INDArray result) |
IComplexNDArray |
BaseComplexNDArray.muliColumnVector(INDArray columnVector)
In place addition of a column vector
|
IComplexNDArray |
IComplexNDArray.muliColumnVector(INDArray columnVector)
In place addition of a column vector
|
IComplexNDArray |
BaseComplexNDArray.muliRowVector(INDArray rowVector)
In place addition of a column vector
|
IComplexNDArray |
IComplexNDArray.muliRowVector(INDArray rowVector)
In place addition of a column vector
|
IComplexNDArray |
BaseComplexNDArray.mulRowVector(INDArray rowVector)
In place addition of a column vector
|
IComplexNDArray |
IComplexNDArray.mulRowVector(INDArray rowVector)
In place addition of a column vector
|
IComplexNDArray |
BaseComplexNDArray.neq(INDArray other) |
IComplexNDArray |
IComplexNDArray.neq(INDArray other) |
IComplexNDArray |
BaseComplexNDArray.neqi(INDArray other) |
IComplexNDArray |
IComplexNDArray.neqi(INDArray other) |
IComplexNDArray |
BaseComplexNDArray.put(int[] indices,
INDArray element)
Inserts the element at the specified index
|
IComplexNDArray |
IComplexNDArray.put(int[] indices,
INDArray element)
Inserts the element at the specified index
|
IComplexNDArray |
BaseComplexNDArray.put(int i,
INDArray element)
Inserts the element at the specified index
|
IComplexNDArray |
IComplexNDArray.put(int i,
INDArray element)
Inserts the element at the specified index
|
IComplexNDArray |
BaseComplexNDArray.put(int i,
int j,
INDArray element)
Inserts the element at the specified index
|
IComplexNDArray |
IComplexNDArray.put(int i,
int j,
INDArray element)
Inserts the element at the specified index
|
IComplexNDArray |
BaseComplexNDArray.put(NDArrayIndex[] indices,
INDArray element) |
IComplexNDArray |
BaseComplexNDArray.putColumn(int column,
INDArray toPut)
Insert a column in to this array
Will throw an exception if this
ndarray is not a matrix
|
IComplexNDArray |
IComplexNDArray.putColumn(int column,
INDArray toPut)
Insert a column in to this array
Will throw an exception if this
ndarray is not a matrix
|
IComplexNDArray |
BaseComplexNDArray.putRow(int row,
INDArray toPut)
Insert a row in to this array
Will throw an exception if this
ndarray is not a matrix
|
IComplexNDArray |
IComplexNDArray.putRow(int row,
INDArray toPut)
Insert a row in to this array
Will throw an exception if this
ndarray is not a matrix
|
IComplexNDArray |
BaseComplexNDArray.putSlice(int slice,
INDArray put)
Assigns the given matrix (put) to the specified slice
|
IComplexNDArray |
IComplexNDArray.putSlice(int slice,
INDArray put)
Assigns the given matrix (put) to the specified slice
|
IComplexNDArray |
BaseComplexNDArray.rdiv(IComplexNumber n,
INDArray result) |
IComplexNDArray |
IComplexNDArray.rdiv(IComplexNumber n,
INDArray result) |
IComplexNDArray |
BaseComplexNDArray.rdiv(INDArray other)
Reverse division
|
IComplexNDArray |
IComplexNDArray.rdiv(INDArray other)
Reverse division
|
IComplexNDArray |
BaseComplexNDArray.rdiv(INDArray other,
INDArray result)
Reverse division
|
IComplexNDArray |
IComplexNDArray.rdiv(INDArray other,
INDArray result)
Reverse division
|
IComplexNDArray |
BaseComplexNDArray.rdiv(Number n,
INDArray result) |
IComplexNDArray |
IComplexNDArray.rdiv(Number n,
INDArray result) |
IComplexNDArray |
BaseComplexNDArray.rdivColumnVector(INDArray columnVector) |
IComplexNDArray |
IComplexNDArray.rdivColumnVector(INDArray columnVector) |
IComplexNDArray |
BaseComplexNDArray.rdivi(IComplexNumber n,
INDArray result) |
IComplexNDArray |
IComplexNDArray.rdivi(IComplexNumber n,
INDArray result) |
IComplexNDArray |
BaseComplexNDArray.rdivi(INDArray other)
Reverse divsion (in place)
|
IComplexNDArray |
IComplexNDArray.rdivi(INDArray other)
Reverse divsion (in place)
|
IComplexNDArray |
BaseComplexNDArray.rdivi(INDArray other,
INDArray result)
Reverse division (in-place)
|
IComplexNDArray |
IComplexNDArray.rdivi(INDArray other,
INDArray result)
Reverse division (in-place)
|
IComplexNDArray |
BaseComplexNDArray.rdivi(Number n,
INDArray result) |
IComplexNDArray |
IComplexNDArray.rdivi(Number n,
INDArray result) |
IComplexNDArray |
BaseComplexNDArray.rdiviColumnVector(INDArray columnVector) |
IComplexNDArray |
IComplexNDArray.rdiviColumnVector(INDArray columnVector) |
IComplexNDArray |
BaseComplexNDArray.rdiviRowVector(INDArray rowVector) |
IComplexNDArray |
IComplexNDArray.rdiviRowVector(INDArray rowVector) |
IComplexNDArray |
BaseComplexNDArray.rdivRowVector(INDArray rowVector) |
IComplexNDArray |
IComplexNDArray.rdivRowVector(INDArray rowVector) |
IComplexNDArray |
BaseComplexNDArray.rsub(IComplexNumber n,
INDArray result) |
IComplexNDArray |
IComplexNDArray.rsub(IComplexNumber n,
INDArray result) |
IComplexNDArray |
BaseComplexNDArray.rsub(INDArray other) |
IComplexNDArray |
IComplexNDArray.rsub(INDArray other) |
IComplexNDArray |
BaseComplexNDArray.rsub(INDArray other,
INDArray result)
Reverse subtraction
|
IComplexNDArray |
IComplexNDArray.rsub(INDArray other,
INDArray result)
Reverse subtraction
|
IComplexNDArray |
BaseComplexNDArray.rsub(Number n,
INDArray result) |
IComplexNDArray |
IComplexNDArray.rsub(Number n,
INDArray result) |
IComplexNDArray |
BaseComplexNDArray.rsubColumnVector(INDArray columnVector) |
IComplexNDArray |
IComplexNDArray.rsubColumnVector(INDArray columnVector) |
IComplexNDArray |
BaseComplexNDArray.rsubi(IComplexNumber n,
INDArray result) |
IComplexNDArray |
IComplexNDArray.rsubi(IComplexNumber n,
INDArray result) |
IComplexNDArray |
BaseComplexNDArray.rsubi(INDArray other) |
IComplexNDArray |
IComplexNDArray.rsubi(INDArray other) |
IComplexNDArray |
BaseComplexNDArray.rsubi(INDArray other,
INDArray result)
Reverse subtraction (in-place)
|
IComplexNDArray |
IComplexNDArray.rsubi(INDArray other,
INDArray result)
Reverse subtraction (in-place)
|
IComplexNDArray |
BaseComplexNDArray.rsubi(Number n,
INDArray result) |
IComplexNDArray |
IComplexNDArray.rsubi(Number n,
INDArray result) |
IComplexNDArray |
BaseComplexNDArray.rsubiColumnVector(INDArray columnVector) |
IComplexNDArray |
IComplexNDArray.rsubiColumnVector(INDArray columnVector) |
IComplexNDArray |
BaseComplexNDArray.rsubiRowVector(INDArray rowVector) |
IComplexNDArray |
IComplexNDArray.rsubiRowVector(INDArray rowVector) |
IComplexNDArray |
BaseComplexNDArray.rsubRowVector(INDArray rowVector) |
IComplexNDArray |
IComplexNDArray.rsubRowVector(INDArray rowVector) |
double |
BaseComplexNDArray.squaredDistance(INDArray other)
Returns the squared (Euclidean) distance.
|
IComplexNDArray |
BaseComplexNDArray.sub(IComplexNumber n,
INDArray result) |
IComplexNDArray |
IComplexNDArray.sub(IComplexNumber n,
INDArray result) |
IComplexNDArray |
BaseComplexNDArray.sub(INDArray other)
copy subtraction of two matrices
|
IComplexNDArray |
IComplexNDArray.sub(INDArray other)
copy subtraction of two matrices
|
IComplexNDArray |
BaseComplexNDArray.sub(INDArray other,
INDArray result)
copy subtraction of two matrices
|
IComplexNDArray |
IComplexNDArray.sub(INDArray other,
INDArray result)
copy subtraction of two matrices
|
IComplexNDArray |
BaseComplexNDArray.sub(Number n,
INDArray result) |
IComplexNDArray |
IComplexNDArray.sub(Number n,
INDArray result) |
IComplexNDArray |
BaseComplexNDArray.subColumnVector(INDArray columnVector)
In place addition of a column vector
|
IComplexNDArray |
IComplexNDArray.subColumnVector(INDArray columnVector)
In place addition of a column vector
|
IComplexNDArray |
BaseComplexNDArray.subi(IComplexNumber n,
INDArray result) |
IComplexNDArray |
IComplexNDArray.subi(IComplexNumber n,
INDArray result) |
IComplexNDArray |
BaseComplexNDArray.subi(INDArray other)
in place subtraction of two matrices
|
IComplexNDArray |
IComplexNDArray.subi(INDArray other)
in place subtraction of two matrices
|
IComplexNDArray |
BaseComplexNDArray.subi(INDArray other,
INDArray result)
in place subtraction of two matrices
|
IComplexNDArray |
IComplexNDArray.subi(INDArray other,
INDArray result)
in place subtraction of two matrices
|
IComplexNDArray |
BaseComplexNDArray.subi(Number n,
INDArray result) |
IComplexNDArray |
IComplexNDArray.subi(Number n,
INDArray result) |
IComplexNDArray |
BaseComplexNDArray.subiColumnVector(INDArray columnVector)
In place addition of a column vector
|
IComplexNDArray |
IComplexNDArray.subiColumnVector(INDArray columnVector)
In place addition of a column vector
|
IComplexNDArray |
BaseComplexNDArray.subiRowVector(INDArray rowVector)
In place addition of a column vector
|
IComplexNDArray |
IComplexNDArray.subiRowVector(INDArray rowVector)
In place addition of a column vector
|
IComplexNDArray |
BaseComplexNDArray.subRowVector(INDArray rowVector)
In place addition of a column vector
|
IComplexNDArray |
IComplexNDArray.subRowVector(INDArray rowVector)
In place addition of a column vector
|
Constructor and Description |
---|
BaseComplexNDArray(INDArray m)
Construct a complex matrix from a realComponent matrix.
|
BaseComplexNDArray(INDArray m,
char ordering)
Construct a complex matrix from a realComponent matrix.
|
BaseComplexNDArray(INDArray m,
int[] stride)
Create with the specified ndarray as the real component
and the given stride
|
BaseComplexNDArray(INDArray m,
int[] stride,
char ordering)
Initialize the given ndarray as the real component
|
Modifier and Type | Method and Description |
---|---|
void |
InMemoryInstrumentation.log(INDArray toLog) |
void |
Instrumentation.log(INDArray toLog)
Log the given ndarray
|
void |
InMemoryInstrumentation.log(INDArray toLog,
String status) |
void |
Instrumentation.log(INDArray toLog,
String status)
Log the given ndarray
|
Constructor and Description |
---|
LogEntry(INDArray toLog) |
LogEntry(INDArray toLog,
StackTraceElement[] stackTraceElements) |
LogEntry(INDArray toLog,
StackTraceElement[] stackTraceElements,
String status) |
LogEntry(INDArray toLog,
String status) |
Modifier and Type | Method and Description |
---|---|
INDArray |
NDArrayIO.read(File file)
Read in an ndarray from a file
|
INDArray |
BaseNDArrayIO.read(File file)
Read in an ndarray from a file
|
INDArray |
NDArrayIO.read(InputStream is)
Read in an ndrray from an input stream
|
Modifier and Type | Method and Description |
---|---|
void |
NDArrayIO.write(INDArray out,
File to)
Write an ndarray to the output stream
|
void |
BaseNDArrayIO.write(INDArray out,
File to)
Write an ndarray to the output stream
|
void |
NDArrayIO.write(INDArray out,
OutputStream to)
Write an ndarray to the output stream
|
Modifier and Type | Class and Description |
---|---|
class |
BaseNDArray
NDArray: (think numpy)
A few things of note.
|
class |
LinearViewNDArray
Row vector view of an ndarray
|
Modifier and Type | Field and Description |
---|---|
protected INDArray |
BaseNDArray.linearView |
Modifier and Type | Field and Description |
---|---|
protected WeakReference<INDArray> |
BaseNDArray.ref |
Modifier and Type | Method and Description |
---|---|
INDArray |
INDArray.add(INDArray other)
copy addition of two matrices
|
INDArray |
BaseNDArray.add(INDArray other)
copy addition of two matrices
|
INDArray |
INDArray.add(INDArray other,
INDArray result)
copy addition of two matrices
|
INDArray |
BaseNDArray.add(INDArray other,
INDArray result)
copy addition of two matrices
|
INDArray |
INDArray.add(Number n)
Scalar addition (cloning)
|
INDArray |
BaseNDArray.add(Number n) |
INDArray |
INDArray.add(Number n,
INDArray result) |
INDArray |
BaseNDArray.add(Number n,
INDArray result) |
INDArray |
INDArray.addColumnVector(INDArray columnVector)
In place addition of a column vector
|
INDArray |
BaseNDArray.addColumnVector(INDArray columnVector)
In place addition of a column vector
|
INDArray |
INDArray.addi(INDArray other)
in place addition of two matrices
|
INDArray |
BaseNDArray.addi(INDArray other)
in place addition of two matrices
|
INDArray |
INDArray.addi(INDArray other,
INDArray result)
in place addition of two matrices
|
INDArray |
BaseNDArray.addi(INDArray other,
INDArray result)
in place addition of two matrices
|
INDArray |
INDArray.addi(Number n)
In place scalar addition
|
INDArray |
BaseNDArray.addi(Number n) |
INDArray |
INDArray.addi(Number n,
INDArray result)
In place addition
|
INDArray |
BaseNDArray.addi(Number n,
INDArray result) |
INDArray |
INDArray.addiColumnVector(INDArray columnVector)
In place addition of a column vector
|
INDArray |
BaseNDArray.addiColumnVector(INDArray columnVector)
In place addition of a column vector
|
INDArray |
INDArray.addiRowVector(INDArray rowVector)
In place addition of a column vector
|
INDArray |
BaseNDArray.addiRowVector(INDArray rowVector)
In place addition of a column vector
|
INDArray |
INDArray.addRowVector(INDArray rowVector)
In place addition of a column vector
|
INDArray |
BaseNDArray.addRowVector(INDArray rowVector)
In place addition of a column vector
|
INDArray |
INDArray.assign(INDArray arr)
Assign all of the elements in the given
ndarray to this ndarray
|
INDArray |
BaseNDArray.assign(INDArray arr)
Assign all of the elements in the given
ndarray to this ndarray
|
INDArray |
INDArray.assign(Number value)
Set the value of the ndarray to the specified value
|
INDArray |
BaseNDArray.assign(Number value)
Set the value of the ndarray to the specified value
|
INDArray |
INDArray.broadcast(int... shape)
Broadcasts this ndarray to be the specified shape
|
INDArray |
BaseNDArray.broadcast(int[] shape)
Broadcasts this ndarray to be the specified shape
|
INDArray |
INDArray.cond(Condition condition)
1 in the ndarray if the element matches
the condition 0 otherwise
|
INDArray |
BaseNDArray.cond(Condition condition) |
INDArray |
INDArray.condi(Condition condition)
1 in the ndarray if the element matches
the condition 0 otherwise
|
INDArray |
BaseNDArray.condi(Condition condition) |
protected INDArray |
BaseNDArray.create(BaseNDArray baseNDArray) |
protected INDArray |
BaseNDArray.create(DataBuffer buffer) |
protected INDArray |
BaseNDArray.create(DataBuffer data,
int[] shape,
int offset) |
protected INDArray |
BaseNDArray.create(DataBuffer data,
int[] newShape,
int[] newStrides,
int offset) |
protected INDArray |
BaseNDArray.create(DataBuffer data,
int[] newShape,
int[] newStrides,
int offset,
char ordering) |
protected INDArray |
BaseNDArray.create(int[] shape) |
protected INDArray |
BaseNDArray.create(int[] shape,
char ordering) |
protected INDArray |
BaseNDArray.create(int[] shape,
int[] strides,
int offset) |
protected INDArray |
BaseNDArray.create(int rows,
int length) |
protected INDArray |
BaseNDArray.createScalar(double d) |
INDArray |
INDArray.cumsum(int dimension)
Cumulative sum along a dimension (in place)
|
INDArray |
BaseNDArray.cumsum(int dimension)
Cumulative sum along a dimension (in place)
|
INDArray |
INDArray.cumsumi(int dimension)
Cumulative sum along a dimension
|
INDArray |
BaseNDArray.cumsumi(int dimension)
Cumulative sum along a dimension
|
INDArray |
INDArray.dimShuffle(Object[] rearrange,
int[] newOrder,
boolean[] broadCastable)
Dimshuffle: an extension of permute that adds the ability
to broadcast various dimensions.
|
INDArray |
BaseNDArray.dimShuffle(Object[] rearrange,
int[] newOrder,
boolean[] broadCastable)
Dimshuffle: an extension of permute that adds the ability
to broadcast various dimensions.
|
INDArray |
INDArray.div(INDArray other)
in place (element wise) division of two matrices
|
INDArray |
BaseNDArray.div(INDArray other)
in place (element wise) division of two matrices
|
INDArray |
INDArray.div(INDArray other,
INDArray result)
copy (element wise) division of two matrices
|
INDArray |
BaseNDArray.div(INDArray other,
INDArray result)
copy (element wise) division of two matrices
|
INDArray |
INDArray.div(Number n)
Division by a number
|
INDArray |
BaseNDArray.div(Number n) |
INDArray |
INDArray.div(Number n,
INDArray result) |
INDArray |
BaseNDArray.div(Number n,
INDArray result) |
INDArray |
INDArray.divColumnVector(INDArray columnVector)
In place addition of a column vector
|
INDArray |
BaseNDArray.divColumnVector(INDArray columnVector)
In place addition of a column vector
|
INDArray |
INDArray.divi(INDArray other)
in place (element wise) division of two matrices
|
INDArray |
BaseNDArray.divi(INDArray other)
in place (element wise) division of two matrices
|
INDArray |
INDArray.divi(INDArray other,
INDArray result)
in place (element wise) division of two matrices
|
INDArray |
BaseNDArray.divi(INDArray other,
INDArray result)
in place (element wise) division of two matrices
|
INDArray |
INDArray.divi(Number n)
In place scalar division
|
INDArray |
BaseNDArray.divi(Number n) |
INDArray |
INDArray.divi(Number n,
INDArray result)
In place division of this ndarray
|
INDArray |
BaseNDArray.divi(Number n,
INDArray result) |
INDArray |
INDArray.diviColumnVector(INDArray columnVector)
In place addition of a column vector
|
INDArray |
BaseNDArray.diviColumnVector(INDArray columnVector)
In place addition of a column vector
|
INDArray |
INDArray.diviRowVector(INDArray rowVector)
In place addition of a column vector
|
INDArray |
BaseNDArray.diviRowVector(INDArray rowVector)
In place addition of a column vector
|
INDArray |
INDArray.divRowVector(INDArray rowVector)
In place addition of a column vector
|
INDArray |
BaseNDArray.divRowVector(INDArray rowVector)
In place addition of a column vector
|
protected INDArray |
BaseNDArray.doColumnWise(INDArray columnVector,
char operation)
Do a row wise op (a,s,m,d)
a : add
s : subtract
m : multiply
d : divide
h : reverse subtraction
t : reverse division
|
protected INDArray |
BaseNDArray.doRowWise(INDArray rowVector,
char operation)
Do a row wise op (a,s,m,d)
a : add
s : subtract
m : multiply
d : divide
h : reverse subtraction
t : reverse division
|
INDArray |
INDArray.dup()
Return a copy of this ndarray
|
INDArray |
BaseNDArray.dup() |
INDArray |
INDArray.eps(INDArray other)
epsilon equals than comparison:
If the given number is less than the
comparison number the item is 0 otherwise 1
|
INDArray |
BaseNDArray.eps(INDArray other)
epsilon equals than comparison:
If the given number is less than the
comparison number the item is 0 otherwise 1
|
INDArray |
INDArray.eps(Number other)
Returns an ndarray with 1 if the element is epsilon equals
|
INDArray |
BaseNDArray.eps(Number other)
Returns an ndarray with 1 if the element is epsilon equals
|
INDArray |
INDArray.epsi(INDArray other)
In place epsilon equals than comparison:
If the given number is less than the
comparison number the item is 0 otherwise 1
|
INDArray |
BaseNDArray.epsi(INDArray other)
In place epsilon equals than comparison:
If the given number is less than the
comparison number the item is 0 otherwise 1
|
INDArray |
INDArray.epsi(Number other)
Returns an ndarray with 1 if the element is epsilon equals
|
INDArray |
BaseNDArray.epsi(Number other)
Returns an ndarray with 1 if the element is epsilon equals
|
INDArray |
INDArray.eq(INDArray other)
equal than comparison:
If the given number is less than the
comparison number the item is 0 otherwise 1
|
INDArray |
BaseNDArray.eq(INDArray other) |
INDArray |
INDArray.eq(Number other)
Returns an ndarray with 1 if the element is less than
the given element 0 other wise
|
INDArray |
BaseNDArray.eq(Number other) |
INDArray |
INDArray.eqi(INDArray other)
In place equal than comparison:
If the given number is less than the
comparison number the item is 0 otherwise 1
|
INDArray |
BaseNDArray.eqi(INDArray other) |
INDArray |
INDArray.eqi(Number other)
In place less than comparison:
If the given number is less than the
comparison number the item is 0 otherwise 1
|
INDArray |
BaseNDArray.eqi(Number other) |
INDArray |
INDArray.get(NDArrayIndex... indexes)
Returns a subset of this array based on the specified
indexes
|
INDArray |
BaseNDArray.get(NDArrayIndex... indexes)
Returns a subset of this array based on the specified
indexes
|
INDArray |
INDArray.getColumn(int i)
Returns the specified column.
|
INDArray |
BaseNDArray.getColumn(int c)
Get the specified column
|
INDArray |
INDArray.getColumns(int[] columns)
Get a list of specified columns
|
INDArray |
BaseNDArray.getColumns(int[] cindices)
Get whole columns from the passed indices.
|
INDArray |
INDArray.getRow(int i)
Returns the specified row.
|
INDArray |
BaseNDArray.getRow(int r)
Get a copy of a row.
|
INDArray |
INDArray.getRows(int[] rows)
Get a list of rows
|
INDArray |
BaseNDArray.getRows(int[] rindices)
Get whole rows from the passed indices.
|
INDArray |
BaseNDArray.getScalar(int... indexes)
Fetch a particular number on a multi dimensional scale.
|
INDArray |
INDArray.getScalar(int i)
Returns the element at the specified index
|
INDArray |
BaseNDArray.getScalar(int i) |
INDArray |
INDArray.getScalar(int[] indices)
Returns the elements at the the specified indices
|
INDArray |
INDArray.getScalar(int row,
int column)
Returns the element at the specified row/column
This will throw an exception if the
|
INDArray |
BaseNDArray.getScalar(int row,
int column)
Returns the element at the specified row/column
This will throw an exception if the
|
INDArray |
INDArray.gt(INDArray other)
greater than comparison:
If the given number is less than the
comparison number the item is 0 otherwise 1
|
INDArray |
BaseNDArray.gt(INDArray other) |
INDArray |
INDArray.gt(Number other)
Greater than boolean (copying)(
|
INDArray |
BaseNDArray.gt(Number other) |
INDArray |
INDArray.gti(INDArray other)
In place greater than comparison:
If the given number is less than the
comparison number the item is 0 otherwise 1
|
INDArray |
BaseNDArray.gti(INDArray other) |
INDArray |
INDArray.gti(Number other)
In place greater than comparison:
If the given number is less than the
comparison number the item is 0 otherwise 1
|
INDArray |
BaseNDArray.gti(Number other) |
INDArray |
LinearViewNDArray.linearView() |
INDArray |
INDArray.linearView()
Returns a linear view reference of shape
1,length(ndarray)
|
INDArray |
BaseNDArray.linearView()
Returns a linear view reference of shape
1,length(ndarray)
|
INDArray |
LinearViewNDArray.linearViewColumnOrder() |
INDArray |
INDArray.linearViewColumnOrder()
Returns a linear view reference of shape
1,length(ndarray)
|
INDArray |
BaseNDArray.linearViewColumnOrder() |
INDArray |
INDArray.lt(INDArray other)
less than comparison:
If the given number is less than the
comparison number the item is 0 otherwise 1
|
INDArray |
BaseNDArray.lt(INDArray other) |
INDArray |
INDArray.lt(Number other)
Returns an ndarray with 1 if the element is less than
the given element 0 other wise
|
INDArray |
BaseNDArray.lt(Number other) |
INDArray |
INDArray.lti(INDArray other)
In place less than comparison:
If the given number is less than the
comparison number the item is 0 otherwise 1
|
INDArray |
BaseNDArray.lti(INDArray other) |
INDArray |
INDArray.lti(Number other)
In place less than comparison:
If the given number is less than the
comparison number the item is 0 otherwise 1
|
INDArray |
BaseNDArray.lti(Number other) |
INDArray |
INDArray.max(int dimension)
Returns the overall max of this ndarray
|
INDArray |
BaseNDArray.max(int dimension)
Returns the overall max of this ndarray
|
INDArray |
INDArray.mean(int dimension)
Returns the overall mean of this ndarray
|
INDArray |
BaseNDArray.mean(int dimension)
Returns the overall mean of this ndarray
|
INDArray |
INDArray.min(int dimension)
Returns the overall min of this ndarray
|
INDArray |
BaseNDArray.min(int dimension)
Returns the overall min of this ndarray
|
INDArray |
INDArray.mmul(INDArray other)
Perform a copy matrix multiplication
|
INDArray |
BaseNDArray.mmul(INDArray other)
Perform a copy matrix multiplication
|
INDArray |
INDArray.mmul(INDArray other,
INDArray result)
Perform an copy matrix multiplication
|
INDArray |
BaseNDArray.mmul(INDArray other,
INDArray result)
Perform an copy matrix multiplication
|
INDArray |
INDArray.mmuli(INDArray other)
Perform an copy matrix multiplication
|
INDArray |
BaseNDArray.mmuli(INDArray other)
Perform an copy matrix multiplication
|
INDArray |
INDArray.mmuli(INDArray other,
INDArray result)
Perform an copy matrix multiplication
|
INDArray |
BaseNDArray.mmuli(INDArray other,
INDArray result)
Perform an copy matrix multiplication
|
INDArray |
INDArray.mul(INDArray other)
copy (element wise) multiplication of two matrices
|
INDArray |
BaseNDArray.mul(INDArray other)
copy (element wise) multiplication of two matrices
|
INDArray |
INDArray.mul(INDArray other,
INDArray result)
copy (element wise) multiplication of two matrices
|
INDArray |
BaseNDArray.mul(INDArray other,
INDArray result)
copy (element wise) multiplication of two matrices
|
INDArray |
INDArray.mul(Number n)
Scalar multiplication (copy)
|
INDArray |
BaseNDArray.mul(Number n) |
INDArray |
INDArray.mul(Number n,
INDArray result) |
INDArray |
BaseNDArray.mul(Number n,
INDArray result) |
INDArray |
INDArray.mulColumnVector(INDArray columnVector)
In place addition of a column vector
|
INDArray |
BaseNDArray.mulColumnVector(INDArray columnVector)
In place addition of a column vector
|
INDArray |
INDArray.muli(INDArray other)
in place (element wise) multiplication of two matrices
|
INDArray |
BaseNDArray.muli(INDArray other)
in place (element wise) multiplication of two matrices
|
INDArray |
INDArray.muli(INDArray other,
INDArray result)
in place (element wise) multiplication of two matrices
|
INDArray |
BaseNDArray.muli(INDArray other,
INDArray result)
in place (element wise) multiplication of two matrices
|
INDArray |
INDArray.muli(Number n)
In place scalar multiplication
|
INDArray |
BaseNDArray.muli(Number n) |
INDArray |
INDArray.muli(Number n,
INDArray result)
In place multiplication of this ndarray
|
INDArray |
BaseNDArray.muli(Number n,
INDArray result) |
INDArray |
INDArray.muliColumnVector(INDArray columnVector)
In place addition of a column vector
|
INDArray |
BaseNDArray.muliColumnVector(INDArray columnVector)
In place addition of a column vector
|
INDArray |
INDArray.muliRowVector(INDArray rowVector)
In place addition of a column vector
|
INDArray |
BaseNDArray.muliRowVector(INDArray rowVector)
In place addition of a column vector
|
INDArray |
INDArray.mulRowVector(INDArray rowVector)
In place addition of a column vector
|
INDArray |
BaseNDArray.mulRowVector(INDArray rowVector)
In place addition of a column vector
|
INDArray |
INDArray.neg()
Returns the ndarray negative (cloned)
|
INDArray |
BaseNDArray.neg()
Negate each element.
|
INDArray |
INDArray.negi()
In place setting of the negative version of this ndarray
|
INDArray |
BaseNDArray.negi()
Negate each element (in-place).
|
INDArray |
INDArray.neq(INDArray other) |
INDArray |
BaseNDArray.neq(INDArray other) |
INDArray |
INDArray.neq(Number other) |
INDArray |
BaseNDArray.neq(Number other) |
INDArray |
INDArray.neqi(INDArray other) |
INDArray |
BaseNDArray.neqi(INDArray other) |
INDArray |
INDArray.neqi(Number other) |
INDArray |
BaseNDArray.neqi(Number other) |
protected INDArray |
BaseNDArray.newShape(int[] newShape,
char ordering) |
INDArray |
INDArray.norm1(int dimension)
Returns the norm1 along the specified dimension
|
INDArray |
BaseNDArray.norm1(int dimension)
Returns the norm1 along the specified dimension
|
INDArray |
INDArray.norm2(int dimension)
Returns the norm2 along the specified dimension
|
INDArray |
BaseNDArray.norm2(int dimension)
Returns the norm2 along the specified dimension
|
INDArray |
INDArray.normmax(int dimension)
Returns the normmax along the specified dimension
|
INDArray |
BaseNDArray.normmax(int dimension)
Returns the normmax along the specified dimension
|
INDArray |
INDArray.permute(int... rearrange)
See: http://www.mathworks.com/help/matlab/ref/permute.html
|
INDArray |
BaseNDArray.permute(int[] rearrange)
See: http://www.mathworks.com/help/matlab/ref/permute.htsliceml
|
INDArray |
INDArray.prod(int dimension)
Returns the product along a given dimension
|
INDArray |
BaseNDArray.prod(int dimension)
Returns the product along a given dimension
|
INDArray |
INDArray.put(int[] indices,
INDArray element)
Inserts the element at the specified index
|
INDArray |
BaseNDArray.put(int[] indices,
INDArray element)
Inserts the element at the specified index
|
INDArray |
INDArray.put(int i,
INDArray element)
Inserts the element at the specified index
|
INDArray |
BaseNDArray.put(int i,
INDArray element)
Inserts the element at the specified index
|
INDArray |
INDArray.put(int i,
int j,
INDArray element)
Inserts the element at the specified index
|
INDArray |
BaseNDArray.put(int i,
int j,
INDArray element)
Inserts the element at the specified index
|
INDArray |
INDArray.put(int i,
int j,
Number element)
Inserts the element at the specified index
|
INDArray |
BaseNDArray.put(int i,
int j,
Number element)
Inserts the element at the specified index
|
INDArray |
INDArray.put(NDArrayIndex[] indices,
INDArray element)
Put the elements of the ndarray
in to the specified indices
|
INDArray |
BaseNDArray.put(NDArrayIndex[] indices,
INDArray element) |
INDArray |
INDArray.put(NDArrayIndex[] indices,
Number element)
Put the elements of the ndarray
in to the specified indices
|
INDArray |
BaseNDArray.put(NDArrayIndex[] indices,
Number element) |
INDArray |
INDArray.putColumn(int column,
INDArray toPut)
Insert a column in to this array
Will throw an exception if this
ndarray is not a matrix
|
INDArray |
BaseNDArray.putColumn(int column,
INDArray toPut)
Insert a column in to this array
Will throw an exception if this
ndarray is not a matrix
|
INDArray |
INDArray.putRow(int row,
INDArray toPut)
Insert a row in to this array
Will throw an exception if this
ndarray is not a matrix
|
INDArray |
BaseNDArray.putRow(int row,
INDArray toPut)
Insert a row in to this array
Will throw an exception if this
ndarray is not a matrix
|
INDArray |
INDArray.putScalar(int[] i,
double value)
Insert the item at the specified indices
|
INDArray |
BaseNDArray.putScalar(int[] indexes,
double value) |
INDArray |
INDArray.putScalar(int[] indexes,
float value) |
INDArray |
BaseNDArray.putScalar(int[] indexes,
float value) |
INDArray |
INDArray.putScalar(int[] indexes,
int value) |
INDArray |
BaseNDArray.putScalar(int[] indexes,
int value) |
INDArray |
LinearViewNDArray.putScalar(int i,
double value) |
INDArray |
INDArray.putScalar(int i,
double value)
Insert the number linearly in to the ndarray
|
INDArray |
BaseNDArray.putScalar(int i,
double value) |
INDArray |
INDArray.putScalar(int i,
float value)
Insert a scalar float at the specified index
|
INDArray |
BaseNDArray.putScalar(int i,
float value) |
INDArray |
INDArray.putScalar(int i,
int value)
Insert a scalar int at the specified index
|
INDArray |
BaseNDArray.putScalar(int i,
int value) |
INDArray |
INDArray.putSlice(int slice,
INDArray put)
Assigns the given matrix (put) to the specified slice
|
INDArray |
BaseNDArray.putSlice(int slice,
INDArray put)
Assigns the given matrix (put) to the specified slice
|
INDArray |
INDArray.ravel()
Returns a flattened version (row vector) of this ndarray
|
INDArray |
BaseNDArray.ravel()
Flattens the array for linear indexing
|
INDArray |
INDArray.rdiv(INDArray other)
Reverse division
|
INDArray |
BaseNDArray.rdiv(INDArray other)
Reverse division
|
INDArray |
INDArray.rdiv(INDArray other,
INDArray result)
Reverse division
|
INDArray |
BaseNDArray.rdiv(INDArray other,
INDArray result)
Reverse division
|
INDArray |
INDArray.rdiv(Number n)
Reverse division
|
INDArray |
BaseNDArray.rdiv(Number n) |
INDArray |
INDArray.rdiv(Number n,
INDArray result)
Reverse division (number / ndarray)
|
INDArray |
BaseNDArray.rdiv(Number n,
INDArray result) |
INDArray |
INDArray.rdivColumnVector(INDArray columnVector)
In place reverse division of a column vector
|
INDArray |
BaseNDArray.rdivColumnVector(INDArray columnVector) |
INDArray |
INDArray.rdivi(INDArray other)
Reverse divsion (in place)
|
INDArray |
BaseNDArray.rdivi(INDArray other)
Reverse divsion (in place)
|
INDArray |
INDArray.rdivi(INDArray other,
INDArray result)
Reverse division (in-place)
|
INDArray |
BaseNDArray.rdivi(INDArray other,
INDArray result)
Reverse division (in-place)
|
INDArray |
INDArray.rdivi(Number n)
In place reverse division
|
INDArray |
BaseNDArray.rdivi(Number n) |
INDArray |
INDArray.rdivi(Number n,
INDArray result)
Reverse in place division
|
INDArray |
BaseNDArray.rdivi(Number n,
INDArray result) |
INDArray |
INDArray.rdiviColumnVector(INDArray columnVector)
In place reverse divison of a column vector
|
INDArray |
BaseNDArray.rdiviColumnVector(INDArray columnVector) |
INDArray |
INDArray.rdiviRowVector(INDArray rowVector)
In place addition of a column vector
|
INDArray |
BaseNDArray.rdiviRowVector(INDArray rowVector) |
INDArray |
INDArray.rdivRowVector(INDArray rowVector)
In place addition of a column vector
|
INDArray |
BaseNDArray.rdivRowVector(INDArray rowVector) |
INDArray |
INDArray.repmat(int... shape)
Replicate and tile array to fill out to the given shape
|
INDArray |
BaseNDArray.repmat(int[] shape)
Replicate and tile array to fill out to the given shape
|
INDArray |
INDArray.reshape(int... newShape)
Reshapes the ndarray (can't change the length of the ndarray)
|
INDArray |
BaseNDArray.reshape(int[] shape)
Reshape the ndarray in to the specified dimensions,
possible errors being thrown for invalid shapes
|
INDArray |
INDArray.reshape(int rows,
int columns)
Reshapes the ndarray (can't change the length of the ndarray)
|
INDArray |
BaseNDArray.reshape(int newRows,
int newColumns)
Reshape the matrix.
|
INDArray |
INDArray.rsub(INDArray other) |
INDArray |
BaseNDArray.rsub(INDArray other) |
INDArray |
INDArray.rsub(INDArray other,
INDArray result)
Reverse subtraction
|
INDArray |
BaseNDArray.rsub(INDArray other,
INDArray result)
Reverse subtraction
|
INDArray |
INDArray.rsub(Number n)
Reverse subtraction with duplicates
|
INDArray |
BaseNDArray.rsub(Number n) |
INDArray |
INDArray.rsub(Number n,
INDArray result)
Reverse subtraction
|
INDArray |
BaseNDArray.rsub(Number n,
INDArray result) |
INDArray |
INDArray.rsubColumnVector(INDArray columnVector)
In place addition of a column vector
|
INDArray |
BaseNDArray.rsubColumnVector(INDArray columnVector) |
INDArray |
INDArray.rsubi(INDArray other) |
INDArray |
BaseNDArray.rsubi(INDArray other) |
INDArray |
INDArray.rsubi(INDArray other,
INDArray result)
Reverse subtraction (in-place)
|
INDArray |
BaseNDArray.rsubi(INDArray other,
INDArray result)
Reverse subtraction (in-place)
|
INDArray |
INDArray.rsubi(Number n) |
INDArray |
BaseNDArray.rsubi(Number n) |
INDArray |
INDArray.rsubi(Number n,
INDArray result)
Reverse in place subtraction
|
INDArray |
BaseNDArray.rsubi(Number n,
INDArray result) |
INDArray |
INDArray.rsubiColumnVector(INDArray columnVector)
In place addition of a column vector
|
INDArray |
BaseNDArray.rsubiColumnVector(INDArray columnVector) |
INDArray |
INDArray.rsubiRowVector(INDArray rowVector)
In place addition of a column vector
|
INDArray |
BaseNDArray.rsubiRowVector(INDArray rowVector) |
INDArray |
INDArray.rsubRowVector(INDArray rowVector)
In place addition of a column vector
|
INDArray |
BaseNDArray.rsubRowVector(INDArray rowVector) |
INDArray |
INDArray.slice(int i)
Returns the specified slice of this ndarray
|
INDArray |
BaseNDArray.slice(int slice)
Returns the specified slice of this matrix.
|
INDArray |
INDArray.slice(int i,
int dimension)
Returns the specified slice of this ndarray
|
INDArray |
BaseNDArray.slice(int slice,
int dimension)
Returns the slice of this from the specified dimension
|
INDArray |
INDArray.std(int dimension)
Standard deviation of an ndarray along a dimension
|
INDArray |
BaseNDArray.std(int dimension)
Standard deviation of an ndarray along a dimension
|
INDArray |
INDArray.sub(INDArray other)
copy subtraction of two matrices
|
INDArray |
BaseNDArray.sub(INDArray other)
copy subtraction of two matrices
|
INDArray |
INDArray.sub(INDArray other,
INDArray result)
copy subtraction of two matrices
|
INDArray |
BaseNDArray.sub(INDArray other,
INDArray result)
copy subtraction of two matrices
|
INDArray |
INDArray.sub(Number n)
Scalar subtraction (copied)
|
INDArray |
BaseNDArray.sub(Number n) |
INDArray |
INDArray.sub(Number n,
INDArray result) |
INDArray |
BaseNDArray.sub(Number n,
INDArray result) |
INDArray |
INDArray.subArray(int[] offsets,
int[] shape,
int[] stride) |
INDArray |
BaseNDArray.subArray(int[] offsets,
int[] shape,
int[] stride) |
INDArray |
INDArray.subColumnVector(INDArray columnVector)
In place addition of a column vector
|
INDArray |
BaseNDArray.subColumnVector(INDArray columnVector)
In place addition of a column vector
|
INDArray |
INDArray.subi(INDArray other)
in place subtraction of two matrices
|
INDArray |
BaseNDArray.subi(INDArray other)
in place subtraction of two matrices
|
INDArray |
INDArray.subi(INDArray other,
INDArray result)
in place subtraction of two matrices
|
INDArray |
BaseNDArray.subi(INDArray other,
INDArray result)
in place subtraction of two matrices
|
INDArray |
INDArray.subi(Number n)
In place scalar subtraction
|
INDArray |
BaseNDArray.subi(Number n) |
INDArray |
INDArray.subi(Number n,
INDArray result)
In place subtraction of this ndarray
|
INDArray |
BaseNDArray.subi(Number n,
INDArray result) |
INDArray |
INDArray.subiColumnVector(INDArray columnVector)
In place addition of a column vector
|
INDArray |
BaseNDArray.subiColumnVector(INDArray columnVector)
In place addition of a column vector
|
INDArray |
INDArray.subiRowVector(INDArray rowVector)
In place addition of a column vector
|
INDArray |
BaseNDArray.subiRowVector(INDArray rowVector)
In place addition of a column vector
|
INDArray |
INDArray.subRowVector(INDArray rowVector)
In place addition of a column vector
|
INDArray |
BaseNDArray.subRowVector(INDArray rowVector)
In place addition of a column vector
|
INDArray |
INDArray.sum(int dimension)
Returns the sum along the last dimension of this ndarray
|
INDArray |
BaseNDArray.sum(int dimension)
Returns the sum along the last dimension of this ndarray
|
INDArray |
INDArray.swapAxes(int dimension,
int with)
Mainly here for people coming from numpy.
|
INDArray |
BaseNDArray.swapAxes(int dimension,
int with)
Mainly here for people coming from numpy.
|
INDArray |
INDArray.transpose()
Flip the rows and columns of a matrix
|
INDArray |
BaseNDArray.transpose()
Return transposed copy of this matrix.
|
INDArray |
INDArray.transposei()
Flip the rows and columns of a matrix
|
INDArray |
BaseNDArray.transposei()
Return transposed version of this matrix.
|
INDArray |
INDArray.var(int dimension)
Returns the overall variance of this ndarray
|
INDArray |
BaseNDArray.var(int dimension)
Returns the overall variance of this ndarray
|
INDArray |
LinearViewNDArray.vectorAlongDimension(int index,
int dimension) |
INDArray |
INDArray.vectorAlongDimension(int index,
int dimension)
Get the vector along a particular dimension
|
INDArray |
BaseNDArray.vectorAlongDimension(int index,
int dimension)
Get the vector along a particular dimension
|
Modifier and Type | Method and Description |
---|---|
INDArray |
INDArray.add(INDArray other)
copy addition of two matrices
|
INDArray |
BaseNDArray.add(INDArray other)
copy addition of two matrices
|
INDArray |
INDArray.add(INDArray other,
INDArray result)
copy addition of two matrices
|
INDArray |
BaseNDArray.add(INDArray other,
INDArray result)
copy addition of two matrices
|
INDArray |
INDArray.add(Number n,
INDArray result) |
INDArray |
BaseNDArray.add(Number n,
INDArray result) |
INDArray |
INDArray.addColumnVector(INDArray columnVector)
In place addition of a column vector
|
INDArray |
BaseNDArray.addColumnVector(INDArray columnVector)
In place addition of a column vector
|
INDArray |
INDArray.addi(INDArray other)
in place addition of two matrices
|
INDArray |
BaseNDArray.addi(INDArray other)
in place addition of two matrices
|
INDArray |
INDArray.addi(INDArray other,
INDArray result)
in place addition of two matrices
|
INDArray |
BaseNDArray.addi(INDArray other,
INDArray result)
in place addition of two matrices
|
INDArray |
INDArray.addi(Number n,
INDArray result)
In place addition
|
INDArray |
BaseNDArray.addi(Number n,
INDArray result) |
INDArray |
INDArray.addiColumnVector(INDArray columnVector)
In place addition of a column vector
|
INDArray |
BaseNDArray.addiColumnVector(INDArray columnVector)
In place addition of a column vector
|
INDArray |
INDArray.addiRowVector(INDArray rowVector)
In place addition of a column vector
|
INDArray |
BaseNDArray.addiRowVector(INDArray rowVector)
In place addition of a column vector
|
INDArray |
INDArray.addRowVector(INDArray rowVector)
In place addition of a column vector
|
INDArray |
BaseNDArray.addRowVector(INDArray rowVector)
In place addition of a column vector
|
protected void |
BaseNDArray.assertColumnVector(INDArray column) |
protected void |
BaseNDArray.assertRowVector(INDArray rowVector) |
protected void |
BaseNDArray.assertSlice(INDArray put,
int slice) |
INDArray |
INDArray.assign(INDArray arr)
Assign all of the elements in the given
ndarray to this ndarray
|
INDArray |
BaseNDArray.assign(INDArray arr)
Assign all of the elements in the given
ndarray to this ndarray
|
void |
INDArray.checkDimensions(INDArray other)
Validate dimensions are equal
|
void |
BaseNDArray.checkDimensions(INDArray other) |
protected void |
LinearViewNDArray.collectRows(INDArray slice) |
protected void |
BaseNDArray.copyRealTo(INDArray arr) |
double |
INDArray.distance1(INDArray other)
Returns the (1-norm) distance.
|
double |
BaseNDArray.distance1(INDArray other)
Returns the (1-norm) distance.
|
double |
INDArray.distance2(INDArray other)
Returns the (euclidean) distance.
|
double |
BaseNDArray.distance2(INDArray other)
Returns the (euclidean) distance.
|
INDArray |
INDArray.div(INDArray other)
in place (element wise) division of two matrices
|
INDArray |
BaseNDArray.div(INDArray other)
in place (element wise) division of two matrices
|
INDArray |
INDArray.div(INDArray other,
INDArray result)
copy (element wise) division of two matrices
|
INDArray |
BaseNDArray.div(INDArray other,
INDArray result)
copy (element wise) division of two matrices
|
INDArray |
INDArray.div(Number n,
INDArray result) |
INDArray |
BaseNDArray.div(Number n,
INDArray result) |
INDArray |
INDArray.divColumnVector(INDArray columnVector)
In place addition of a column vector
|
INDArray |
BaseNDArray.divColumnVector(INDArray columnVector)
In place addition of a column vector
|
INDArray |
INDArray.divi(INDArray other)
in place (element wise) division of two matrices
|
INDArray |
BaseNDArray.divi(INDArray other)
in place (element wise) division of two matrices
|
INDArray |
INDArray.divi(INDArray other,
INDArray result)
in place (element wise) division of two matrices
|
INDArray |
BaseNDArray.divi(INDArray other,
INDArray result)
in place (element wise) division of two matrices
|
INDArray |
INDArray.divi(Number n,
INDArray result)
In place division of this ndarray
|
INDArray |
BaseNDArray.divi(Number n,
INDArray result) |
INDArray |
INDArray.diviColumnVector(INDArray columnVector)
In place addition of a column vector
|
INDArray |
BaseNDArray.diviColumnVector(INDArray columnVector)
In place addition of a column vector
|
INDArray |
INDArray.diviRowVector(INDArray rowVector)
In place addition of a column vector
|
INDArray |
BaseNDArray.diviRowVector(INDArray rowVector)
In place addition of a column vector
|
INDArray |
INDArray.divRowVector(INDArray rowVector)
In place addition of a column vector
|
INDArray |
BaseNDArray.divRowVector(INDArray rowVector)
In place addition of a column vector
|
protected INDArray |
BaseNDArray.doColumnWise(INDArray columnVector,
char operation)
Do a row wise op (a,s,m,d)
a : add
s : subtract
m : multiply
d : divide
h : reverse subtraction
t : reverse division
|
protected INDArray |
BaseNDArray.doRowWise(INDArray rowVector,
char operation)
Do a row wise op (a,s,m,d)
a : add
s : subtract
m : multiply
d : divide
h : reverse subtraction
t : reverse division
|
INDArray |
INDArray.eps(INDArray other)
epsilon equals than comparison:
If the given number is less than the
comparison number the item is 0 otherwise 1
|
INDArray |
BaseNDArray.eps(INDArray other)
epsilon equals than comparison:
If the given number is less than the
comparison number the item is 0 otherwise 1
|
INDArray |
INDArray.epsi(INDArray other)
In place epsilon equals than comparison:
If the given number is less than the
comparison number the item is 0 otherwise 1
|
INDArray |
BaseNDArray.epsi(INDArray other)
In place epsilon equals than comparison:
If the given number is less than the
comparison number the item is 0 otherwise 1
|
INDArray |
INDArray.eq(INDArray other)
equal than comparison:
If the given number is less than the
comparison number the item is 0 otherwise 1
|
INDArray |
BaseNDArray.eq(INDArray other) |
INDArray |
INDArray.eqi(INDArray other)
In place equal than comparison:
If the given number is less than the
comparison number the item is 0 otherwise 1
|
INDArray |
BaseNDArray.eqi(INDArray other) |
INDArray |
INDArray.gt(INDArray other)
greater than comparison:
If the given number is less than the
comparison number the item is 0 otherwise 1
|
INDArray |
BaseNDArray.gt(INDArray other) |
INDArray |
INDArray.gti(INDArray other)
In place greater than comparison:
If the given number is less than the
comparison number the item is 0 otherwise 1
|
INDArray |
BaseNDArray.gti(INDArray other) |
INDArray |
INDArray.lt(INDArray other)
less than comparison:
If the given number is less than the
comparison number the item is 0 otherwise 1
|
INDArray |
BaseNDArray.lt(INDArray other) |
INDArray |
INDArray.lti(INDArray other)
In place less than comparison:
If the given number is less than the
comparison number the item is 0 otherwise 1
|
INDArray |
BaseNDArray.lti(INDArray other) |
INDArray |
INDArray.mmul(INDArray other)
Perform a copy matrix multiplication
|
INDArray |
BaseNDArray.mmul(INDArray other)
Perform a copy matrix multiplication
|
INDArray |
INDArray.mmul(INDArray other,
INDArray result)
Perform an copy matrix multiplication
|
INDArray |
BaseNDArray.mmul(INDArray other,
INDArray result)
Perform an copy matrix multiplication
|
INDArray |
INDArray.mmuli(INDArray other)
Perform an copy matrix multiplication
|
INDArray |
BaseNDArray.mmuli(INDArray other)
Perform an copy matrix multiplication
|
INDArray |
INDArray.mmuli(INDArray other,
INDArray result)
Perform an copy matrix multiplication
|
INDArray |
BaseNDArray.mmuli(INDArray other,
INDArray result)
Perform an copy matrix multiplication
|
INDArray |
INDArray.mul(INDArray other)
copy (element wise) multiplication of two matrices
|
INDArray |
BaseNDArray.mul(INDArray other)
copy (element wise) multiplication of two matrices
|
INDArray |
INDArray.mul(INDArray other,
INDArray result)
copy (element wise) multiplication of two matrices
|
INDArray |
BaseNDArray.mul(INDArray other,
INDArray result)
copy (element wise) multiplication of two matrices
|
INDArray |
INDArray.mul(Number n,
INDArray result) |
INDArray |
BaseNDArray.mul(Number n,
INDArray result) |
INDArray |
INDArray.mulColumnVector(INDArray columnVector)
In place addition of a column vector
|
INDArray |
BaseNDArray.mulColumnVector(INDArray columnVector)
In place addition of a column vector
|
INDArray |
INDArray.muli(INDArray other)
in place (element wise) multiplication of two matrices
|
INDArray |
BaseNDArray.muli(INDArray other)
in place (element wise) multiplication of two matrices
|
INDArray |
INDArray.muli(INDArray other,
INDArray result)
in place (element wise) multiplication of two matrices
|
INDArray |
BaseNDArray.muli(INDArray other,
INDArray result)
in place (element wise) multiplication of two matrices
|
INDArray |
INDArray.muli(Number n,
INDArray result)
In place multiplication of this ndarray
|
INDArray |
BaseNDArray.muli(Number n,
INDArray result) |
INDArray |
INDArray.muliColumnVector(INDArray columnVector)
In place addition of a column vector
|
INDArray |
BaseNDArray.muliColumnVector(INDArray columnVector)
In place addition of a column vector
|
INDArray |
INDArray.muliRowVector(INDArray rowVector)
In place addition of a column vector
|
INDArray |
BaseNDArray.muliRowVector(INDArray rowVector)
In place addition of a column vector
|
INDArray |
INDArray.mulRowVector(INDArray rowVector)
In place addition of a column vector
|
INDArray |
BaseNDArray.mulRowVector(INDArray rowVector)
In place addition of a column vector
|
INDArray |
INDArray.neq(INDArray other) |
INDArray |
BaseNDArray.neq(INDArray other) |
INDArray |
INDArray.neqi(INDArray other) |
INDArray |
BaseNDArray.neqi(INDArray other) |
INDArray |
INDArray.put(int[] indices,
INDArray element)
Inserts the element at the specified index
|
INDArray |
BaseNDArray.put(int[] indices,
INDArray element)
Inserts the element at the specified index
|
INDArray |
INDArray.put(int i,
INDArray element)
Inserts the element at the specified index
|
INDArray |
BaseNDArray.put(int i,
INDArray element)
Inserts the element at the specified index
|
INDArray |
INDArray.put(int i,
int j,
INDArray element)
Inserts the element at the specified index
|
INDArray |
BaseNDArray.put(int i,
int j,
INDArray element)
Inserts the element at the specified index
|
INDArray |
INDArray.put(NDArrayIndex[] indices,
INDArray element)
Put the elements of the ndarray
in to the specified indices
|
INDArray |
BaseNDArray.put(NDArrayIndex[] indices,
INDArray element) |
INDArray |
INDArray.putColumn(int column,
INDArray toPut)
Insert a column in to this array
Will throw an exception if this
ndarray is not a matrix
|
INDArray |
BaseNDArray.putColumn(int column,
INDArray toPut)
Insert a column in to this array
Will throw an exception if this
ndarray is not a matrix
|
INDArray |
INDArray.putRow(int row,
INDArray toPut)
Insert a row in to this array
Will throw an exception if this
ndarray is not a matrix
|
INDArray |
BaseNDArray.putRow(int row,
INDArray toPut)
Insert a row in to this array
Will throw an exception if this
ndarray is not a matrix
|
INDArray |
INDArray.putSlice(int slice,
INDArray put)
Assigns the given matrix (put) to the specified slice
|
INDArray |
BaseNDArray.putSlice(int slice,
INDArray put)
Assigns the given matrix (put) to the specified slice
|
INDArray |
INDArray.rdiv(INDArray other)
Reverse division
|
INDArray |
BaseNDArray.rdiv(INDArray other)
Reverse division
|
INDArray |
INDArray.rdiv(INDArray other,
INDArray result)
Reverse division
|
INDArray |
BaseNDArray.rdiv(INDArray other,
INDArray result)
Reverse division
|
INDArray |
INDArray.rdiv(Number n,
INDArray result)
Reverse division (number / ndarray)
|
INDArray |
BaseNDArray.rdiv(Number n,
INDArray result) |
INDArray |
INDArray.rdivColumnVector(INDArray columnVector)
In place reverse division of a column vector
|
INDArray |
BaseNDArray.rdivColumnVector(INDArray columnVector) |
INDArray |
INDArray.rdivi(INDArray other)
Reverse divsion (in place)
|
INDArray |
BaseNDArray.rdivi(INDArray other)
Reverse divsion (in place)
|
INDArray |
INDArray.rdivi(INDArray other,
INDArray result)
Reverse division (in-place)
|
INDArray |
BaseNDArray.rdivi(INDArray other,
INDArray result)
Reverse division (in-place)
|
INDArray |
INDArray.rdivi(Number n,
INDArray result)
Reverse in place division
|
INDArray |
BaseNDArray.rdivi(Number n,
INDArray result) |
INDArray |
INDArray.rdiviColumnVector(INDArray columnVector)
In place reverse divison of a column vector
|
INDArray |
BaseNDArray.rdiviColumnVector(INDArray columnVector) |
INDArray |
INDArray.rdiviRowVector(INDArray rowVector)
In place addition of a column vector
|
INDArray |
BaseNDArray.rdiviRowVector(INDArray rowVector) |
INDArray |
INDArray.rdivRowVector(INDArray rowVector)
In place addition of a column vector
|
INDArray |
BaseNDArray.rdivRowVector(INDArray rowVector) |
INDArray |
INDArray.rsub(INDArray other) |
INDArray |
BaseNDArray.rsub(INDArray other) |
INDArray |
INDArray.rsub(INDArray other,
INDArray result)
Reverse subtraction
|
INDArray |
BaseNDArray.rsub(INDArray other,
INDArray result)
Reverse subtraction
|
INDArray |
INDArray.rsub(Number n,
INDArray result)
Reverse subtraction
|
INDArray |
BaseNDArray.rsub(Number n,
INDArray result) |
INDArray |
INDArray.rsubColumnVector(INDArray columnVector)
In place addition of a column vector
|
INDArray |
BaseNDArray.rsubColumnVector(INDArray columnVector) |
INDArray |
INDArray.rsubi(INDArray other) |
INDArray |
BaseNDArray.rsubi(INDArray other) |
INDArray |
INDArray.rsubi(INDArray other,
INDArray result)
Reverse subtraction (in-place)
|
INDArray |
BaseNDArray.rsubi(INDArray other,
INDArray result)
Reverse subtraction (in-place)
|
INDArray |
INDArray.rsubi(Number n,
INDArray result)
Reverse in place subtraction
|
INDArray |
BaseNDArray.rsubi(Number n,
INDArray result) |
INDArray |
INDArray.rsubiColumnVector(INDArray columnVector)
In place addition of a column vector
|
INDArray |
BaseNDArray.rsubiColumnVector(INDArray columnVector) |
INDArray |
INDArray.rsubiRowVector(INDArray rowVector)
In place addition of a column vector
|
INDArray |
BaseNDArray.rsubiRowVector(INDArray rowVector) |
INDArray |
INDArray.rsubRowVector(INDArray rowVector)
In place addition of a column vector
|
INDArray |
BaseNDArray.rsubRowVector(INDArray rowVector) |
double |
INDArray.squaredDistance(INDArray other)
Returns the squared (Euclidean) distance.
|
double |
BaseNDArray.squaredDistance(INDArray other)
Returns the squared (Euclidean) distance.
|
INDArray |
INDArray.sub(INDArray other)
copy subtraction of two matrices
|
INDArray |
BaseNDArray.sub(INDArray other)
copy subtraction of two matrices
|
INDArray |
INDArray.sub(INDArray other,
INDArray result)
copy subtraction of two matrices
|
INDArray |
BaseNDArray.sub(INDArray other,
INDArray result)
copy subtraction of two matrices
|
INDArray |
INDArray.sub(Number n,
INDArray result) |
INDArray |
BaseNDArray.sub(Number n,
INDArray result) |
INDArray |
INDArray.subColumnVector(INDArray columnVector)
In place addition of a column vector
|
INDArray |
BaseNDArray.subColumnVector(INDArray columnVector)
In place addition of a column vector
|
INDArray |
INDArray.subi(INDArray other)
in place subtraction of two matrices
|
INDArray |
BaseNDArray.subi(INDArray other)
in place subtraction of two matrices
|
INDArray |
INDArray.subi(INDArray other,
INDArray result)
in place subtraction of two matrices
|
INDArray |
BaseNDArray.subi(INDArray other,
INDArray result)
in place subtraction of two matrices
|
INDArray |
INDArray.subi(Number n,
INDArray result)
In place subtraction of this ndarray
|
INDArray |
BaseNDArray.subi(Number n,
INDArray result) |
INDArray |
INDArray.subiColumnVector(INDArray columnVector)
In place addition of a column vector
|
INDArray |
BaseNDArray.subiColumnVector(INDArray columnVector)
In place addition of a column vector
|
INDArray |
INDArray.subiRowVector(INDArray rowVector)
In place addition of a column vector
|
INDArray |
BaseNDArray.subiRowVector(INDArray rowVector)
In place addition of a column vector
|
INDArray |
INDArray.subRowVector(INDArray rowVector)
In place addition of a column vector
|
INDArray |
BaseNDArray.subRowVector(INDArray rowVector)
In place addition of a column vector
|
Modifier and Type | Method and Description |
---|---|
void |
INDArray.sliceVectors(List<INDArray> list) |
void |
BaseNDArray.sliceVectors(List<INDArray> list)
Flattens the array for linear indexing
|
Constructor and Description |
---|
LinearViewNDArray(INDArray wrapped)
Create the linear view
from the given array
|
Constructor and Description |
---|
BaseNDArray(List<INDArray> slices,
int[] shape)
Create an ndarray from the specified slices.
|
BaseNDArray(List<INDArray> slices,
int[] shape,
char ordering)
Create an ndarray from the specified slices.
|
BaseNDArray(List<INDArray> slices,
int[] shape,
int[] stride)
Create an ndarray from the specified slices.
|
BaseNDArray(List<INDArray> slices,
int[] shape,
int[] stride,
char ordering)
Create an ndarray from the specified slices.
|
Modifier and Type | Field and Description |
---|---|
protected INDArray |
BaseOp.x |
protected INDArray |
BaseOp.y |
protected INDArray |
BaseOp.z |
Modifier and Type | Method and Description |
---|---|
INDArray |
BaseLossFunction.input() |
INDArray |
LossFunction.input()
The true
|
INDArray |
BaseLossFunction.output() |
INDArray |
LossFunction.output()
The guess
|
INDArray |
BaseOp.x() |
INDArray |
Op.x()
The origin ndarray
|
INDArray |
BaseOp.y() |
INDArray |
Op.y()
The pairwise op ndarray
|
INDArray |
BaseOp.z() |
INDArray |
Op.z()
The resulting ndarray
|
Modifier and Type | Method and Description |
---|---|
void |
BaseAccumulation.init(INDArray x,
INDArray y,
INDArray z,
int n) |
void |
BaseOp.init(INDArray x,
INDArray y,
INDArray z,
int n) |
void |
Op.init(INDArray x,
INDArray y,
INDArray z,
int n)
Initialize the operation based on the parameters
|
void |
BaseOp.setX(INDArray x) |
void |
Op.setX(INDArray x)
set x (the input ndarray)
|
void |
BaseOp.setY(INDArray y) |
void |
Op.setY(INDArray y)
set y(the pairwise ndarray)
|
void |
BaseOp.setZ(INDArray z) |
void |
Op.setZ(INDArray z)
set z (the solution ndarray)
|
Modifier and Type | Method and Description |
---|---|
INDArray |
OpExecutioner.exec(Accumulation accumulation,
int dimension)
Execute an accumulation along a dimension
|
INDArray |
DefaultOpExecutioner.exec(Accumulation op,
int dimension) |
INDArray |
OpExecutioner.execAndReturn(Op op)
Execute and return a result
ndarray from the given op
|
INDArray |
DefaultOpExecutioner.execAndReturn(Op op) |
INDArray |
OpExecutioner.execAndReturn(ScalarOp op)
Execute and return the result from an accumulation
|
INDArray |
DefaultOpExecutioner.execAndReturn(ScalarOp op) |
INDArray |
OpExecutioner.execAndReturn(ScalarOp op,
int dimension)
Execute and return the result from an accumulation
|
INDArray |
DefaultOpExecutioner.execAndReturn(ScalarOp op,
int dimension) |
INDArray |
OpExecutioner.execAndReturn(TransformOp op)
Execute the operation
|
INDArray |
DefaultOpExecutioner.execAndReturn(TransformOp op) |
INDArray |
OpExecutioner.execAndReturn(TransformOp op,
int dimension)
Execute the operation
|
INDArray |
DefaultOpExecutioner.execAndReturn(TransformOp op,
int dimension) |
Modifier and Type | Method and Description |
---|---|
void |
Variance.init(INDArray x,
INDArray y,
INDArray z,
int n) |
void |
Min.init(INDArray x,
INDArray y,
INDArray z,
int n) |
void |
IAMax.init(INDArray x,
INDArray y,
INDArray z,
int n) |
void |
Bias.init(INDArray x,
INDArray y,
INDArray z,
int n) |
void |
Max.init(INDArray x,
INDArray y,
INDArray z,
int n) |
Modifier and Type | Method and Description |
---|---|
void |
CosineSimilarity.init(INDArray x,
INDArray y,
INDArray z,
int n) |
Constructor and Description |
---|
CosineSimilarity(INDArray x) |
CosineSimilarity(INDArray x,
INDArray y) |
CosineSimilarity(INDArray x,
INDArray y,
INDArray z,
int n) |
CosineSimilarity(INDArray x,
INDArray y,
int n) |
EuclideanDistance(INDArray x) |
EuclideanDistance(INDArray x,
INDArray y) |
EuclideanDistance(INDArray x,
INDArray y,
INDArray z,
int n) |
EuclideanDistance(INDArray x,
INDArray y,
int n) |
ManhattanDistance(INDArray x) |
ManhattanDistance(INDArray x,
INDArray y) |
ManhattanDistance(INDArray x,
INDArray y,
INDArray z,
int n) |
ManhattanDistance(INDArray x,
INDArray y,
int n) |
Modifier and Type | Method and Description |
---|---|
void |
ScalarMax.init(INDArray x,
INDArray y,
INDArray z,
int n) |
Modifier and Type | Method and Description |
---|---|
void |
SetRange.init(INDArray x,
INDArray y,
INDArray z,
int n) |
void |
Pow.init(INDArray x,
INDArray y,
INDArray z,
int n) |
void |
SoftMax.init(INDArray x,
INDArray y,
INDArray z,
int n) |
void |
Stabilize.init(INDArray x,
INDArray y,
INDArray z,
int n) |
void |
VectorFFT.setX(INDArray x) |
void |
VectorIFFT.setX(INDArray x) |
void |
VectorFFT.setY(INDArray y) |
void |
VectorFFT.setZ(INDArray z) |
void |
VectorIFFT.setZ(INDArray z) |
Modifier and Type | Method and Description |
---|---|
void |
DivOp.init(INDArray x,
INDArray y,
INDArray z,
int n) |
void |
AddOp.init(INDArray x,
INDArray y,
INDArray z,
int n) |
void |
CopyOp.init(INDArray x,
INDArray y,
INDArray z,
int n) |
void |
SubOp.init(INDArray x,
INDArray y,
INDArray z,
int n) |
void |
MulOp.init(INDArray x,
INDArray y,
INDArray z,
int n) |
Constructor and Description |
---|
AddOp(INDArray x) |
AddOp(INDArray x,
INDArray z) |
AddOp(INDArray x,
INDArray xDup,
INDArray z) |
AddOp(INDArray x,
INDArray y,
INDArray z,
int n) |
AddOp(INDArray x,
INDArray z,
int n) |
CopyOp(INDArray x) |
CopyOp(INDArray x,
INDArray z) |
CopyOp(INDArray x,
INDArray xDup,
INDArray z) |
CopyOp(INDArray x,
INDArray y,
INDArray z,
int n) |
CopyOp(INDArray x,
INDArray z,
int n) |
DivOp(INDArray x) |
DivOp(INDArray x,
INDArray z) |
DivOp(INDArray x,
INDArray y,
INDArray z,
int n) |
DivOp(INDArray x,
INDArray z,
int n) |
MulOp(INDArray x) |
MulOp(INDArray x,
INDArray z) |
MulOp(INDArray x,
INDArray xDup,
INDArray x1) |
MulOp(INDArray x,
INDArray y,
INDArray z,
int n) |
MulOp(INDArray x,
INDArray z,
int n) |
SubOp(INDArray x) |
SubOp(INDArray x,
INDArray z) |
SubOp(INDArray x,
INDArray y,
INDArray z,
int n) |
SubOp(INDArray x,
INDArray z,
int n) |
Modifier and Type | Method and Description |
---|---|
INDArray |
Random.nextDouble(int[] shape)
Generate a gaussian number ndarray
of the specified shape
|
INDArray |
DefaultRandom.nextDouble(int[] shape) |
INDArray |
Random.nextFloat(int[] shape)
Generate a gaussian number ndarray
of the specified shape
|
INDArray |
DefaultRandom.nextFloat(int[] shape) |
INDArray |
Random.nextGaussian(int[] shape)
Generate a gaussian number ndarray
of the specified shape
|
INDArray |
DefaultRandom.nextGaussian(int[] shape) |
INDArray |
Random.nextInt(int[] shape)
Generate a random set of integers
of the specified shape.
|
INDArray |
DefaultRandom.nextInt(int[] shape) |
INDArray |
Random.nextInt(int n,
int[] shape)
Generate a random set of integers
of the specified shape.
|
INDArray |
DefaultRandom.nextInt(int n,
int[] shape) |
Modifier and Type | Method and Description |
---|---|
INDArray |
Distribution.sample(int[] shape)
Sample the given shape
|
INDArray |
BaseDistribution.sample(int[] shape) |
Modifier and Type | Method and Description |
---|---|
Distribution |
DefaultDistributionFactory.createBinomial(int n,
INDArray p) |
Distribution |
DistributionFactory.createBinomial(int n,
INDArray p)
Create a distribution
|
Distribution |
DefaultDistributionFactory.createNormal(INDArray mean,
double std) |
Distribution |
DistributionFactory.createNormal(INDArray mean,
double std)
Create a normal distribution
with the given mean and std
|
Modifier and Type | Method and Description |
---|---|
INDArray |
NormalDistribution.sample(int[] shape) |
INDArray |
BinomialDistribution.sample(int[] shape) |
Constructor and Description |
---|
BinomialDistribution(int n,
INDArray p) |
NormalDistribution(double standardDeviation,
INDArray means) |
NormalDistribution(INDArray mean,
double std) |
NormalDistribution(Random rng,
double standardDeviation,
INDArray means) |
Constructor and Description |
---|
TimeOperations(INDArray n) |
TimeOperations(INDArray n,
int numTimesRun) |
Modifier and Type | Method and Description |
---|---|
INDArray |
BaseConvolution.conv2d(IComplexNDArray input,
IComplexNDArray kernel,
Convolution.Type type) |
INDArray |
ConvolutionInstance.conv2d(IComplexNDArray input,
IComplexNDArray kernel,
Convolution.Type type) |
static INDArray |
Convolution.conv2d(IComplexNDArray input,
IComplexNDArray kernel,
Convolution.Type type) |
INDArray |
BaseConvolution.conv2d(INDArray input,
INDArray kernel,
Convolution.Type type)
2d convolution (aka the last 2 dimensions
|
INDArray |
ConvolutionInstance.conv2d(INDArray input,
INDArray kernel,
Convolution.Type type)
2d convolution (aka the last 2 dimensions
|
static INDArray |
Convolution.conv2d(INDArray input,
INDArray kernel,
Convolution.Type type)
2d convolution (aka the last 2 dimensions
|
INDArray |
BaseConvolution.convn(INDArray input,
INDArray kernel,
Convolution.Type type)
ND Convolution
|
INDArray |
ConvolutionInstance.convn(INDArray input,
INDArray kernel,
Convolution.Type type)
ND Convolution
|
static INDArray |
Convolution.convn(INDArray input,
INDArray kernel,
Convolution.Type type)
ND Convolution
|
INDArray |
ConvolutionInstance.convn(INDArray input,
INDArray kernel,
Convolution.Type type,
int[] axes)
ND Convolution
|
INDArray |
DefaultConvolutionInstance.convn(INDArray input,
INDArray kernel,
Convolution.Type type,
int[] axes)
ND Convolution
|
static INDArray |
Convolution.convn(INDArray input,
INDArray kernel,
Convolution.Type type,
int[] axes)
ND Convolution
|
Modifier and Type | Method and Description |
---|---|
INDArray |
BaseConvolution.conv2d(INDArray input,
INDArray kernel,
Convolution.Type type)
2d convolution (aka the last 2 dimensions
|
INDArray |
ConvolutionInstance.conv2d(INDArray input,
INDArray kernel,
Convolution.Type type)
2d convolution (aka the last 2 dimensions
|
static INDArray |
Convolution.conv2d(INDArray input,
INDArray kernel,
Convolution.Type type)
2d convolution (aka the last 2 dimensions
|
INDArray |
BaseConvolution.convn(INDArray input,
INDArray kernel,
Convolution.Type type)
ND Convolution
|
INDArray |
ConvolutionInstance.convn(INDArray input,
INDArray kernel,
Convolution.Type type)
ND Convolution
|
static INDArray |
Convolution.convn(INDArray input,
INDArray kernel,
Convolution.Type type)
ND Convolution
|
INDArray |
ConvolutionInstance.convn(INDArray input,
INDArray kernel,
Convolution.Type type,
int[] axes)
ND Convolution
|
INDArray |
DefaultConvolutionInstance.convn(INDArray input,
INDArray kernel,
Convolution.Type type,
int[] axes)
ND Convolution
|
static INDArray |
Convolution.convn(INDArray input,
INDArray kernel,
Convolution.Type type,
int[] axes)
ND Convolution
|
Modifier and Type | Method and Description |
---|---|
INDArray |
DataSet.exampleMaxs() |
INDArray |
DataSet.exampleMeans() |
INDArray |
DataSet.exampleSums() |
INDArray |
DataSet.getFeatureMatrix()
Get the feature matrix (inputs for the data)
|
INDArray |
DataSet.getFeatures() |
INDArray |
DataSet.getLabels()
Returns the labels for the dataset
|
Modifier and Type | Method and Description |
---|---|
void |
DataSet.addFeatureVector(INDArray toAdd)
Adds a feature for each example on to the current feature vector
|
void |
DataSet.addFeatureVector(INDArray feature,
int example)
The feature to add, and the example/row number
|
void |
DataSet.setFeatures(INDArray features) |
void |
DataSet.setLabels(INDArray labels) |
Constructor and Description |
---|
DataSet(INDArray first,
INDArray second)
Creates a dataset with the specified input matrix and labels
|
Modifier and Type | Method and Description |
---|---|
INDArray |
DataSet.exampleMaxs() |
INDArray |
DataSet.exampleMeans() |
INDArray |
DataSet.exampleSums() |
INDArray |
DataSet.getFeatureMatrix() |
INDArray |
DataSet.getFeatures() |
INDArray |
DataSet.getLabels() |
Modifier and Type | Method and Description |
---|---|
void |
DataSet.addFeatureVector(INDArray toAdd) |
void |
DataSet.addFeatureVector(INDArray feature,
int example) |
void |
DataSet.setFeatures(INDArray features) |
void |
DataSet.setLabels(INDArray labels) |
Modifier and Type | Method and Description |
---|---|
protected INDArray |
BaseDataFetcher.createInputMatrix(int numRows)
Creates a feature vector
|
protected INDArray |
BaseDataFetcher.createOutputMatrix(int numRows) |
protected INDArray |
BaseDataFetcher.createOutputVector(int outcomeLabel)
Creates an output label matrix
|
Modifier and Type | Method and Description |
---|---|
static INDArray |
PCA.pca(INDArray X,
int nDims,
boolean normalize)
Reduce the dimension of x
to the specified number of dimensions.
|
Modifier and Type | Method and Description |
---|---|
static INDArray |
PCA.pca(INDArray X,
int nDims,
boolean normalize)
Reduce the dimension of x
to the specified number of dimensions.
|
Modifier and Type | Field and Description |
---|---|
static INDArray |
Eigen.dummy |
Modifier and Type | Method and Description |
---|---|
static INDArray |
Eigen.symmetricGeneralizedEigenvalues(INDArray A)
Compute generalized eigenvalues of the problem A x = L B x.
|
static INDArray |
Eigen.symmetricGeneralizedEigenvalues(INDArray A,
INDArray B)
Compute generalized eigenvalues of the problem A x = L B x.
|
Modifier and Type | Method and Description |
---|---|
static IComplexNDArray |
Eigen.eigenvalues(INDArray A)
Computes the eigenvalues of a general matrix.
|
static IComplexNDArray[] |
Eigen.eigenvectors(INDArray A)
Computes the eigenvalues and eigenvectors of a general matrix.
|
static INDArray |
Eigen.symmetricGeneralizedEigenvalues(INDArray A)
Compute generalized eigenvalues of the problem A x = L B x.
|
static INDArray |
Eigen.symmetricGeneralizedEigenvalues(INDArray A,
INDArray B)
Compute generalized eigenvalues of the problem A x = L B x.
|
Modifier and Type | Interface and Description |
---|---|
interface |
BlasWrapper<NDARRAY_TYPE extends INDArray>
This class provides a cleaner direct interface to the BLAS routines by
extracting the parameters of the matrices from the matrices itself.
|
Modifier and Type | Field and Description |
---|---|
protected static ReferenceQueue<INDArray> |
Nd4j.referenceQueue |
Modifier and Type | Method and Description |
---|---|
INDArray |
BaseNDArrayFactory.appendBias(INDArray... vectors)
Merge the vectors and append a bias.
|
static INDArray |
Nd4j.appendBias(INDArray... vectors) |
INDArray |
NDArrayFactory.appendBias(INDArray... vectors) |
INDArray |
BaseNDArrayFactory.arange(double begin,
double end)
Array of evenly spaced values.
|
static INDArray |
Nd4j.arange(double begin,
double end)
Array of evenly spaced values.
|
INDArray |
NDArrayFactory.arange(double begin,
double end)
Array of evenly spaced values.
|
INDArray |
BlasWrapper.axpy(double da,
INDArray dx,
INDArray dy) |
INDArray |
BaseNDArrayFactory.bilinearProducts(INDArray curr,
INDArray in)
Returns a column vector where each entry is the nth bilinear
product of the nth slices of the two tensors.
|
static INDArray |
Nd4j.bilinearProducts(INDArray curr,
INDArray in)
Returns a column vector where each entry is the nth bilinear
product of the nth slices of the two tensors.
|
INDArray |
NDArrayFactory.bilinearProducts(INDArray curr,
INDArray in)
Returns a column vector where each entry is the nth bilinear
product of the nth slices of the two tensors.
|
static INDArray |
Nd4j.complexZeros(int rows,
int columns)
Creates a matrix of zeros
|
INDArray |
BaseNDArrayFactory.concat(int dimension,
INDArray... toConcat)
concatenate ndarrays along a dimension
|
static INDArray |
Nd4j.concat(int dimension,
INDArray... toConcat)
Concatneate ndarrays along a dimension
|
INDArray |
NDArrayFactory.concat(int dimension,
INDArray... toConcat)
Concatneate ndarrays along a dimension
|
static INDArray |
Nd4j.create(DataBuffer buffer) |
INDArray |
NDArrayFactory.create(DataBuffer data)
Creates a row vector with the data
|
static INDArray |
Nd4j.create(DataBuffer data,
int[] shape) |
INDArray |
NDArrayFactory.create(DataBuffer data,
int[] shape)
Create an ndrray with the specified shape
|
static INDArray |
Nd4j.create(DataBuffer data,
int[] shape,
int offset) |
INDArray |
NDArrayFactory.create(DataBuffer buffer,
int[] shape,
int offset) |
INDArray |
BaseNDArrayFactory.create(DataBuffer buffer,
int[] shape,
int[] stride,
char order,
int offset) |
INDArray |
NDArrayFactory.create(DataBuffer buffer,
int[] shape,
int[] stride,
char order,
int offset) |
static INDArray |
Nd4j.create(DataBuffer data,
int[] shape,
int[] strides,
int offset) |
INDArray |
NDArrayFactory.create(DataBuffer data,
int[] shape,
int[] stride,
int offset)
Creates an ndarray with the specified shape
|
static INDArray |
Nd4j.create(DataBuffer data,
int[] newShape,
int[] newStride,
int offset,
char ordering) |
INDArray |
NDArrayFactory.create(DataBuffer data,
int[] newShape,
int[] newStride,
int offset,
char ordering) |
INDArray |
NDArrayFactory.create(DataBuffer data,
int rows,
int columns,
int[] stride,
int offset)
Creates an ndarray with the specified shape
|
INDArray |
BaseNDArrayFactory.create(double[] data)
Creates a row vector with the data
|
static INDArray |
Nd4j.create(double[] data)
Creates a row vector with the data
|
INDArray |
NDArrayFactory.create(double[] data)
Creates a row vector with the data
|
static INDArray |
Nd4j.create(double[][] data)
Create an ndarray based on the given data layout
|
INDArray |
NDArrayFactory.create(double[][] data)
Create an ndarray with the given data layout
|
INDArray |
BaseNDArrayFactory.create(double[] data,
char order) |
static INDArray |
Nd4j.create(double[] data,
char order)
Creates a row vector with the data
|
INDArray |
NDArrayFactory.create(double[] data,
char order) |
INDArray |
BaseNDArrayFactory.create(double[] data,
int[] shape)
Create an ndrray with the specified shape
|
static INDArray |
Nd4j.create(double[] data,
int[] shape)
Create an ndrray with the specified shape
|
INDArray |
NDArrayFactory.create(double[] data,
int[] shape)
Create an ndrray with the specified shape
|
static INDArray |
Nd4j.create(double[] data,
int[] shape,
char ordering)
Create an ndrray with the specified shape
|
INDArray |
NDArrayFactory.create(double[] data,
int[] shape,
char ordering) |
static INDArray |
Nd4j.create(double[] data,
int[] shape,
int offset) |
INDArray |
NDArrayFactory.create(double[] data,
int[] shape,
int offset) |
INDArray |
BaseNDArrayFactory.create(double[] data,
int[] shape,
int[] stride,
char order,
int offset) |
INDArray |
NDArrayFactory.create(double[] data,
int[] ints,
int[] ints1,
char order,
int offset) |
abstract INDArray |
BaseNDArrayFactory.create(double[] data,
int[] shape,
int[] stride,
int offset)
Creates an ndarray with the specified shape
|
static INDArray |
Nd4j.create(double[] data,
int[] shape,
int[] stride,
int offset)
Creates an ndarray with the specified shape
|
INDArray |
NDArrayFactory.create(double[] data,
int[] shape,
int[] stride,
int offset)
Creates an ndarray with the specified shape
|
static INDArray |
Nd4j.create(double[] data,
int[] shape,
int[] stride,
int offset,
char ordering)
Creates an ndarray with the specified shape
|
INDArray |
NDArrayFactory.create(double[] data,
int[] shape,
int[] stride,
int offset,
char ordering) |
static INDArray |
Nd4j.create(double[] data,
int[] shape,
int offset,
char ordering)
Creates an ndarray with the specified shape
|
INDArray |
BaseNDArrayFactory.create(double[] data,
int rows,
int columns,
int[] stride,
int offset)
Creates an ndarray with the specified shape
|
static INDArray |
Nd4j.create(double[] data,
int rows,
int columns,
int[] stride,
int offset)
Creates an ndarray with the specified shape
|
INDArray |
NDArrayFactory.create(double[] data,
int rows,
int columns,
int[] stride,
int offset)
Creates an ndarray with the specified shape
|
static INDArray |
Nd4j.create(double[] data,
int rows,
int columns,
int[] stride,
int offset,
char ordering)
Creates an ndarray with the specified shape
|
INDArray |
BaseNDArrayFactory.create(float[] data)
Creates a row vector with the data
|
static INDArray |
Nd4j.create(float[] data)
Creates a row vector with the data
|
INDArray |
NDArrayFactory.create(float[] data)
Creates a row vector with the data
|
static INDArray |
Nd4j.create(float[][] doubles) |
INDArray |
NDArrayFactory.create(float[][] floats) |
INDArray |
BaseNDArrayFactory.create(float[] data,
char order) |
static INDArray |
Nd4j.create(float[] data,
char order)
Creates a row vector with the data
|
INDArray |
NDArrayFactory.create(float[] data,
char order) |
INDArray |
BaseNDArrayFactory.create(float[] data,
int[] shape)
Create an ndrray with the specified shape
|
static INDArray |
Nd4j.create(float[] data,
int[] shape)
Create an ndrray with the specified shape
|
INDArray |
NDArrayFactory.create(float[] data,
int[] shape)
Create an ndrray with the specified shape
|
INDArray |
BaseNDArrayFactory.create(float[] data,
int[] shape,
char ordering) |
static INDArray |
Nd4j.create(float[] data,
int[] shape,
char ordering)
Create an ndrray with the specified shape
|
INDArray |
NDArrayFactory.create(float[] data,
int[] shape,
char ordering) |
static INDArray |
Nd4j.create(float[] data,
int[] shape,
char ordering,
int offset) |
INDArray |
BaseNDArrayFactory.create(float[] data,
int[] shape,
int offset) |
static INDArray |
Nd4j.create(float[] data,
int[] shape,
int offset)
Creates an ndarray with the specified shape
|
INDArray |
NDArrayFactory.create(float[] data,
int[] shape,
int offset) |
INDArray |
BaseNDArrayFactory.create(float[] data,
int[] shape,
int[] stride,
char order,
int offset) |
static INDArray |
Nd4j.create(float[] data,
int[] shape,
int[] stride,
char ordering,
int offset) |
INDArray |
NDArrayFactory.create(float[] data,
int[] shape,
int[] stride,
char order,
int offset) |
abstract INDArray |
BaseNDArrayFactory.create(float[] data,
int[] shape,
int[] stride,
int offset)
Creates an ndarray with the specified shape
|
static INDArray |
Nd4j.create(float[] data,
int[] shape,
int[] stride,
int offset)
Creates an ndarray with the specified shape
|
INDArray |
NDArrayFactory.create(float[] data,
int[] shape,
int[] stride,
int offset)
Creates an ndarray with the specified shape
|
static INDArray |
Nd4j.create(float[] data,
int[] shape,
int[] stride,
int offset,
char ordering)
Creates an ndarray with the specified shape
|
INDArray |
NDArrayFactory.create(float[] data,
int[] shape,
int[] stride,
int offset,
char ordering) |
INDArray |
NDArrayFactory.create(float[] data,
int[] shape,
int offset,
Character order) |
INDArray |
BaseNDArrayFactory.create(float[] data,
int rows,
int columns,
int[] stride,
int offset)
Creates an ndarray with the specified shape
|
static INDArray |
Nd4j.create(float[] data,
int rows,
int columns,
int[] stride,
int offset)
Creates an ndarray with the specified shape
|
INDArray |
NDArrayFactory.create(float[] data,
int rows,
int columns,
int[] stride,
int offset) |
static INDArray |
Nd4j.create(float[] data,
int rows,
int columns,
int[] stride,
int offset,
char ordering)
Creates an ndarray with the specified shape
|
INDArray |
NDArrayFactory.create(float[] data,
int rows,
int columns,
int[] stride,
int offset,
char ordering) |
static INDArray |
Nd4j.create(int... shape)
Creates an ndarray with the specified shape
|
INDArray |
BaseNDArrayFactory.create(int columns)
Creates a row vector with the specified number of columns
|
static INDArray |
Nd4j.create(int columns)
Creates a row vector with the specified number of columns
|
INDArray |
NDArrayFactory.create(int columns)
Creates a row vector with the specified number of columns
|
INDArray |
BaseNDArrayFactory.create(int[] shape)
Creates an ndarray with the specified shape
|
INDArray |
NDArrayFactory.create(int[] shape)
Creates an ndarray with the specified shape
|
static INDArray |
Nd4j.create(int[] shape,
char ordering)
Creates an ndarray with the specified shape
|
INDArray |
NDArrayFactory.create(int[] shape,
char ordering) |
INDArray |
BaseNDArrayFactory.create(int[] shape,
DataBuffer.Type dataType) |
static INDArray |
Nd4j.create(int[] shape,
DataBuffer.Type dataType) |
INDArray |
NDArrayFactory.create(int[] shape,
DataBuffer.Type dataType) |
INDArray |
NDArrayFactory.create(int[] shape,
DataBuffer buffer) |
static INDArray |
Nd4j.create(int[] sliceShape,
double[]... arrays)
Create an ndarray based on the given data
|
static INDArray |
Nd4j.create(int[] sliceShape,
float[]... arrays)
Create an ndarray based on the given data
|
INDArray |
BaseNDArrayFactory.create(int[] shape,
int[] stride)
Creates an ndarray with the specified shape
|
static INDArray |
Nd4j.create(int[] shape,
int[] stride)
Creates an ndarray with the specified shape
|
INDArray |
NDArrayFactory.create(int[] shape,
int[] stride)
Creates an ndarray with the specified shape
|
static INDArray |
Nd4j.create(int[] shape,
int[] stride,
char ordering)
Creates an ndarray with the specified shape
|
INDArray |
BaseNDArrayFactory.create(int[] shape,
int[] stride,
int offset)
Creates an ndarray with the specified shape
|
static INDArray |
Nd4j.create(int[] shape,
int[] stride,
int offset)
Creates an ndarray with the specified shape
|
INDArray |
NDArrayFactory.create(int[] shape,
int[] stride,
int offset)
Creates an ndarray with the specified shape
|
INDArray |
BaseNDArrayFactory.create(int[] data,
int[] shape,
int[] stride,
char order,
int offset) |
INDArray |
NDArrayFactory.create(int[] shape,
int[] ints1,
int[] stride,
char order,
int offset) |
INDArray |
BaseNDArrayFactory.create(int[] ints,
int[] ints1,
int[] stride,
int offset) |
INDArray |
NDArrayFactory.create(int[] ints,
int[] ints1,
int[] stride,
int offset) |
INDArray |
BaseNDArrayFactory.create(int[] shape,
int[] stride,
int offset,
char ordering) |
static INDArray |
Nd4j.create(int[] shape,
int[] stride,
int offset,
char ordering)
Creates an ndarray with the specified shape
|
INDArray |
NDArrayFactory.create(int[] shape,
int[] stride,
int offset,
char ordering) |
static INDArray |
Nd4j.create(int columns,
char order)
Creates a row vector with the specified number of columns
|
INDArray |
BaseNDArrayFactory.create(int rows,
int columns)
Creates an ndarray with the specified shape
|
static INDArray |
Nd4j.create(int rows,
int columns)
Creates an ndarray with the specified shape
|
INDArray |
NDArrayFactory.create(int rows,
int columns)
Creates an ndarray with the specified shape
|
INDArray |
BaseNDArrayFactory.create(int rows,
int columns,
char ordering) |
static INDArray |
Nd4j.create(int rows,
int columns,
char ordering)
Creates an ndarray with the specified shape
|
INDArray |
NDArrayFactory.create(int rows,
int columns,
char ordering) |
INDArray |
BaseNDArrayFactory.create(int rows,
int columns,
int[] stride)
Creates an ndarray with the specified shape
|
static INDArray |
Nd4j.create(int rows,
int columns,
int[] stride)
Creates an ndarray with the specified shape
|
INDArray |
NDArrayFactory.create(int rows,
int columns,
int[] stride)
Creates an ndarray with the specified shape
|
static INDArray |
Nd4j.create(int rows,
int columns,
int[] stride,
char ordering)
Creates an ndarray with the specified shape
|
INDArray |
BaseNDArrayFactory.create(int rows,
int columns,
int[] stride,
int offset)
Creates an ndarray with the specified shape
|
static INDArray |
Nd4j.create(int rows,
int columns,
int[] stride,
int offset)
Creates an ndarray with the specified shape
|
INDArray |
NDArrayFactory.create(int rows,
int columns,
int[] stride,
int offset)
Creates an ndarray with the specified shape
|
static INDArray |
Nd4j.create(int rows,
int columns,
int[] stride,
int offset,
char ordering)
Creates an ndarray with the specified shape
|
abstract INDArray |
BaseNDArrayFactory.create(List<INDArray> list,
int[] shape)
Creates an ndarray with the specified shape
|
static INDArray |
Nd4j.create(List<INDArray> list,
int[] shape)
Creates an ndarray with the specified shape
|
INDArray |
NDArrayFactory.create(List<INDArray> list,
int[] shape)
Creates an ndarray with the specified shape
|
static INDArray |
Nd4j.create(List<INDArray> list,
int[] shape,
char ordering)
Creates an ndarray with the specified shape
|
INDArray |
NDArrayFactory.create(List<INDArray> list,
int[] shape,
char ordering) |
static INDArray |
Nd4j.cumsum(INDArray compute) |
static INDArray |
Nd4j.cumsum(INDArray compute,
int dimension) |
static INDArray |
Nd4j.diag(INDArray x)
Creates a new matrix where the values of the given vector are the diagonal values of
the matrix if a vector is passed in, if a matrix is returns the kth diagonal
in the matrix
|
static INDArray |
Nd4j.diag(INDArray x,
int k)
Creates a new matrix where the values of the given vector are the diagonal values of
the matrix if a vector is passed in, if a matrix is returns the kth diagonal
in the matrix
|
static INDArray |
Nd4j.emptyLike(INDArray arr)
Empty like
|
INDArray |
BaseNDArrayFactory.eye(int n)
Create the identity ndarray
|
static INDArray |
Nd4j.eye(int n)
Create the identity ndarray
|
INDArray |
NDArrayFactory.eye(int n)
Create the identity ndarray
|
INDArray |
BlasWrapper.gemm(double alpha,
INDArray a,
INDArray b,
double beta,
INDArray c)
************************************************************************
BLAS Level 3
|
INDArray |
BlasWrapper.gemv(double alpha,
INDArray a,
INDArray x,
double beta,
INDArray y)
************************************************************************
BLAS Level 2
|
INDArray |
BlasWrapper.ger(double alpha,
INDArray x,
INDArray y,
INDArray a) |
INDArray |
BaseNDArrayFactory.hstack(INDArray... arrs)
Concatenates two matrices horizontally.
|
static INDArray |
Nd4j.hstack(INDArray... arrs)
Concatenates two matrices horizontally.
|
INDArray |
NDArrayFactory.hstack(INDArray... arrs)
Concatenates two matrices horizontally.
|
INDArray |
BaseNDArrayFactory.linspace(int lower,
int upper,
int num)
Generate a linearly spaced vector
|
static INDArray |
Nd4j.linspace(int lower,
int upper,
int num)
Generate a linearly spaced vector
|
INDArray |
NDArrayFactory.linspace(int lower,
int upper,
int num)
Generate a linearly spaced vector
|
static INDArray |
Nd4j.max(INDArray compute) |
static INDArray |
Nd4j.max(INDArray compute,
int dimension) |
static INDArray |
Nd4j.mean(INDArray compute) |
static INDArray |
Nd4j.mean(INDArray compute,
int dimension) |
static INDArray |
Nd4j.min(INDArray compute) |
static INDArray |
Nd4j.min(INDArray compute,
int dimension) |
static INDArray |
Nd4j.norm1(INDArray compute) |
static INDArray |
Nd4j.norm1(INDArray compute,
int dimension) |
static INDArray |
Nd4j.norm2(INDArray compute) |
static INDArray |
Nd4j.norm2(INDArray compute,
int dimension) |
static INDArray |
Nd4j.normmax(INDArray compute) |
static INDArray |
Nd4j.normmax(INDArray compute,
int dimension) |
static INDArray |
Nd4j.ones(int... shape)
Create an ndarray of ones
|
INDArray |
BaseNDArrayFactory.ones(int columns)
Creates a row vector with the specified number of columns
|
static INDArray |
Nd4j.ones(int columns)
Creates a row vector with the specified number of columns
|
INDArray |
NDArrayFactory.ones(int columns)
Creates a row vector with the specified number of columns
|
INDArray |
BaseNDArrayFactory.ones(int[] shape)
Create an ndarray of ones
|
INDArray |
NDArrayFactory.ones(int[] shape)
Create an ndarray of ones
|
INDArray |
BaseNDArrayFactory.ones(int rows,
int columns)
Creates a row vector with the specified number of columns
|
static INDArray |
Nd4j.ones(int rows,
int columns)
Creates a row vector with the specified number of columns
|
INDArray |
NDArrayFactory.ones(int rows,
int columns)
Creates a row vector with the specified number of columns
|
static INDArray |
Nd4j.onesLike(INDArray arr)
Ones like
|
static INDArray |
Nd4j.prod(INDArray compute) |
static INDArray |
Nd4j.prod(INDArray compute,
int dimension) |
INDArray |
BaseNDArrayFactory.rand(int[] shape)
Create a random ndarray with the given shape using
the current time as the seed
|
static INDArray |
Nd4j.rand(int[] shape)
Create a random ndarray with the given shape using
the current time as the seed
|
INDArray |
NDArrayFactory.rand(int[] shape)
Create a random ndarray with the given shape using
the current time as the seed
|
INDArray |
BaseNDArrayFactory.rand(int[] shape,
Distribution r)
Create a random ndarray with the given shape using the given rng
|
static INDArray |
Nd4j.rand(int[] shape,
Distribution r)
Create a random ndarray with the given shape using the given rng
|
INDArray |
NDArrayFactory.rand(int[] shape,
Distribution r)
Create a random ndarray with the given shape using the given rng
|
INDArray |
BaseNDArrayFactory.rand(int[] shape,
double min,
double max,
Random rng) |
static INDArray |
Nd4j.rand(int[] shape,
double min,
double max,
Random rng)
Generates a random matrix between min and max
|
INDArray |
NDArrayFactory.rand(int[] shape,
double min,
double max,
Random rng) |
INDArray |
BaseNDArrayFactory.rand(int[] shape,
float min,
float max,
Random rng)
Generates a random matrix between min and max
|
INDArray |
NDArrayFactory.rand(int[] shape,
float min,
float max,
Random rng)
Generates a random matrix between min and max
|
INDArray |
BaseNDArrayFactory.rand(int[] shape,
long seed)
Create a random ndarray with the given shape using the given rng
|
static INDArray |
Nd4j.rand(int[] shape,
long seed)
Create a random ndarray with the given shape using the given rng
|
INDArray |
NDArrayFactory.rand(int[] shape,
long seed)
Create a random ndarray with the given shape using the given rng
|
INDArray |
BaseNDArrayFactory.rand(int[] shape,
Random r)
Create a random ndarray with the given shape using the given rng
|
static INDArray |
Nd4j.rand(int[] shape,
Random r)
Create a random ndarray with the given shape using the given rng
|
INDArray |
NDArrayFactory.rand(int[] shape,
Random r)
Create a random ndarray with the given shape using the given rng
|
INDArray |
BaseNDArrayFactory.rand(int rows,
int columns)
Create a random ndarray with the given shape using
the current time as the seed
|
static INDArray |
Nd4j.rand(int rows,
int columns)
Create a random ndarray with the given shape using
the current time as the seed
|
INDArray |
NDArrayFactory.rand(int rows,
int columns)
Create a random ndarray with the given shape using
the current time as the seed
|
INDArray |
BaseNDArrayFactory.rand(int rows,
int columns,
double min,
double max,
Random rng) |
static INDArray |
Nd4j.rand(int rows,
int columns,
double min,
double max,
Random rng)
Generates a random matrix between min and max
|
INDArray |
NDArrayFactory.rand(int rows,
int columns,
double min,
double max,
Random rng) |
INDArray |
BaseNDArrayFactory.rand(int rows,
int columns,
float min,
float max,
Random rng)
Generates a random matrix between min and max
|
INDArray |
NDArrayFactory.rand(int rows,
int columns,
float min,
float max,
Random rng)
Generates a random matrix between min and max
|
INDArray |
BaseNDArrayFactory.rand(int rows,
int columns,
long seed)
Create a random ndarray with the given shape using the given rng
|
static INDArray |
Nd4j.rand(int rows,
int columns,
long seed)
Create a random ndarray with the given shape using the given rng
|
INDArray |
NDArrayFactory.rand(int rows,
int columns,
long seed)
Create a random ndarray with the given shape using the given rng
|
INDArray |
BaseNDArrayFactory.rand(int rows,
int columns,
Random r)
Create a random ndarray with the given shape using the given rng
|
static INDArray |
Nd4j.rand(int rows,
int columns,
Random r)
Deprecated.
|
INDArray |
NDArrayFactory.rand(int rows,
int columns,
Random r)
Create a random ndarray with the given shape using the given rng
|
static INDArray |
Nd4j.rand(long seed,
int... shape)
Create a random ndarray with the given shape using the given rng
|
INDArray |
BaseNDArrayFactory.randn(int[] shape)
Random normal using the current time stamp
as the seed
|
static INDArray |
Nd4j.randn(int[] shape)
Random normal using the current time stamp
as the seed
|
INDArray |
NDArrayFactory.randn(int[] shape)
Random normal using the current time stamp
as the seed
|
INDArray |
BaseNDArrayFactory.randn(int[] shape,
long seed)
Random normal using the specified seed
|
static INDArray |
Nd4j.randn(int[] shape,
long seed)
Random normal using the specified seed
|
INDArray |
NDArrayFactory.randn(int[] shape,
long seed)
Random normal using the specified seed
|
INDArray |
BaseNDArrayFactory.randn(int[] shape,
Random r)
Random normal using the given rng
|
static INDArray |
Nd4j.randn(int[] shape,
Random r)
Random normal using the given rng
|
INDArray |
NDArrayFactory.randn(int[] shape,
Random r)
Random normal using the given rng
|
INDArray |
BaseNDArrayFactory.randn(int rows,
int columns)
Random normal using the current time stamp
as the seed
|
static INDArray |
Nd4j.randn(int rows,
int columns)
Random normal using the current time stamp
as the seed
|
INDArray |
NDArrayFactory.randn(int rows,
int columns)
Random normal using the current time stamp
as the seed
|
INDArray |
BaseNDArrayFactory.randn(int rows,
int columns,
long seed)
Random normal using the specified seed
|
static INDArray |
Nd4j.randn(int rows,
int columns,
long seed)
Random normal using the specified seed
|
INDArray |
NDArrayFactory.randn(int rows,
int columns,
long seed)
Random normal using the specified seed
|
INDArray |
BaseNDArrayFactory.randn(int rows,
int columns,
Random r)
Random normal using the given rng
|
static INDArray |
Nd4j.randn(int rows,
int columns,
Random r)
Random normal using the given rng
|
INDArray |
NDArrayFactory.randn(int rows,
int columns,
Random r)
Random normal using the given rng
|
static INDArray |
Nd4j.read(DataInputStream dis)
Read in an ndarray from a data input stream
|
static INDArray |
Nd4j.readTxt(InputStream filePath,
String split)
Read line via input streams
|
static INDArray |
Nd4j.readTxt(String filePath)
Read line via input streams
|
static INDArray |
Nd4j.readTxt(String filePath,
String split)
Read line via input streams
|
static INDArray |
Nd4j.repeat(INDArray n,
int num)
Create an n x (shape)
ndarray where the ndarray is repeated num times
|
INDArray |
BaseNDArrayFactory.reverse(INDArray reverse)
Reverses the passed in matrix such that m[0] becomes m[m.length - 1] etc
|
static INDArray |
Nd4j.reverse(INDArray reverse)
Reverses the passed in matrix such that m[0] becomes m[m.length - 1] etc
|
INDArray |
NDArrayFactory.reverse(INDArray reverse)
Reverses the passed in matrix such that m[0] becomes m[m.length - 1] etc
|
INDArray |
BaseNDArrayFactory.rot(INDArray reverse)
Reverses the passed in matrix such that m[0] becomes m[m.length - 1] etc
|
static INDArray |
Nd4j.rot(INDArray reverse)
Reverses the passed in matrix such that m[0] becomes m[m.length - 1] etc
|
INDArray |
NDArrayFactory.rot(INDArray reverse)
Reverses the passed in matrix such that m[0] becomes m[m.length - 1] etc
|
INDArray |
BlasWrapper.scal(double alpha,
INDArray x) |
INDArray |
BaseNDArrayFactory.scalar(double value)
Create a scalar nd array with the specified value and offset
|
static INDArray |
Nd4j.scalar(double value)
Create a scalar nd array with the specified value and offset
|
INDArray |
NDArrayFactory.scalar(double value)
Create a scalar nd array with the specified value and offset
|
INDArray |
BaseNDArrayFactory.scalar(double value,
int offset)
Create a scalar nd array with the specified value and offset
|
static INDArray |
Nd4j.scalar(double value,
int offset)
Create a scalar nd array with the specified value and offset
|
INDArray |
NDArrayFactory.scalar(double value,
int offset)
Create a scalar nd array with the specified value and offset
|
INDArray |
BaseNDArrayFactory.scalar(float value)
Create a scalar nd array with the specified value and offset
|
static INDArray |
Nd4j.scalar(float value)
Create a scalar nd array with the specified value and offset
|
INDArray |
NDArrayFactory.scalar(float value)
Create a scalar nd array with the specified value and offset
|
INDArray |
BaseNDArrayFactory.scalar(float value,
int offset)
Create a scalar nd array with the specified value and offset
|
static INDArray |
Nd4j.scalar(float value,
int offset)
Create a scalar nd array with the specified value and offset
|
INDArray |
NDArrayFactory.scalar(float value,
int offset)
Create a scalar nd array with the specified value and offset
|
INDArray |
BaseNDArrayFactory.scalar(int value,
int offset)
Create a scalar nd array with the specified value and offset
|
INDArray |
NDArrayFactory.scalar(int value,
int offset) |
INDArray |
BaseNDArrayFactory.scalar(Number value)
Create a scalar ndarray with the specified offset
|
static INDArray |
Nd4j.scalar(Number value)
Create a scalar ndarray with the specified offset
|
INDArray |
NDArrayFactory.scalar(Number value)
Create a scalar ndarray with the specified offset
|
INDArray |
BaseNDArrayFactory.scalar(Number value,
int offset)
Create a scalar ndarray with the specified offset
|
static INDArray |
Nd4j.scalar(Number value,
int offset)
Create a scalar ndarray with the specified offset
|
INDArray |
NDArrayFactory.scalar(Number value,
int offset)
Create a scalar ndarray with the specified offset
|
static INDArray |
Nd4j.sort(INDArray ndarray,
int dimension,
boolean ascending)
Sort an ndarray along a particular dimension
|
static INDArray[] |
Nd4j.sortWithIndices(IComplexNDArray ndarray,
int dimension,
boolean ascending)
Sort an ndarray along a particular dimension
|
static INDArray[] |
Nd4j.sortWithIndices(INDArray ndarray,
int dimension,
boolean ascending)
Sort an ndarray along a particular dimension
|
static INDArray |
Nd4j.std(INDArray compute) |
static INDArray |
Nd4j.std(INDArray compute,
int dimension) |
static INDArray |
Nd4j.sum(INDArray compute) |
static INDArray |
Nd4j.sum(INDArray compute,
int dimension) |
static INDArray |
Nd4j.tile(INDArray tile,
int... repeat)
An alias for repmat
|
INDArray |
BaseNDArrayFactory.toFlattened(Collection<INDArray> matrices)
Returns a vector with all of the elements in every nd array
equal to the sum of the lengths of the ndarrays
|
static INDArray |
Nd4j.toFlattened(Collection<INDArray> matrices)
Create a long row vector of all of the given ndarrays
|
INDArray |
NDArrayFactory.toFlattened(Collection<INDArray> matrices)
/**
Returns a flattened ndarray with all of the elements in each ndarray
regardless of dimension
|
INDArray |
BaseNDArrayFactory.toFlattened(INDArray... matrices) |
static INDArray |
Nd4j.toFlattened(INDArray... matrices)
Create a long row vector of all of the given ndarrays
|
INDArray |
NDArrayFactory.toFlattened(INDArray... matrices)
Flatten all of the ndarrays in to one long vector
|
INDArray |
BaseNDArrayFactory.toFlattened(int length,
Iterator<? extends INDArray>... matrices) |
static INDArray |
Nd4j.toFlattened(int length,
Iterator<? extends INDArray>... matrices)
Create a long row vector of all of the given ndarrays
|
INDArray |
NDArrayFactory.toFlattened(int length,
Iterator<? extends INDArray>... matrices)
Returns a flattened ndarray with all of the elements in each ndarray
regardless of dimension
|
INDArray |
BaseNDArrayFactory.valueArrayOf(int[] shape,
double value)
Creates an ndarray with the specified value
as the only value in the ndarray
|
static INDArray |
Nd4j.valueArrayOf(int[] shape,
double value)
Creates an ndarray with the specified value
as the only value in the ndarray
|
INDArray |
NDArrayFactory.valueArrayOf(int[] shape,
double value)
Creates an ndarray with the specified value
as the only value in the ndarray
|
static INDArray |
Nd4j.valueArrayOf(int num,
double value)
Creates an ndarray with the specified value
as the only value in the ndarray
|
INDArray |
BaseNDArrayFactory.valueArrayOf(int rows,
int columns,
double value)
Creates a row vector with the specified number of columns
|
static INDArray |
Nd4j.valueArrayOf(int rows,
int columns,
double value)
Creates a row vector with the specified number of columns
|
INDArray |
NDArrayFactory.valueArrayOf(int rows,
int columns,
double value)
Creates a row vector with the specified number of columns
|
static INDArray |
Nd4j.var(INDArray compute) |
static INDArray |
Nd4j.var(INDArray compute,
int dimension) |
INDArray |
BaseNDArrayFactory.vstack(INDArray... arrs)
Concatenates two matrices vertically.
|
static INDArray |
Nd4j.vstack(INDArray... arrs)
Concatenates two matrices vertically.
|
INDArray |
NDArrayFactory.vstack(INDArray... arrs)
Concatenates two matrices vertically.
|
INDArray |
BaseNDArrayFactory.zeros(int columns)
Creates a row vector with the specified number of columns
|
static INDArray |
Nd4j.zeros(int columns)
Creates a row vector with the specified number of columns
|
INDArray |
NDArrayFactory.zeros(int columns)
Creates a row vector with the specified number of columns
|
INDArray |
BaseNDArrayFactory.zeros(int[] shape)
Create an ndarray of zeros
|
static INDArray |
Nd4j.zeros(int[] shape)
Create an ndarray of zeros
|
INDArray |
NDArrayFactory.zeros(int[] shape)
Create an ndarray of zeros
|
INDArray |
BaseNDArrayFactory.zeros(int rows,
int columns)
Creates a row vector with the specified number of columns
|
static INDArray |
Nd4j.zeros(int rows,
int columns)
Creates a row vector with the specified number of columns
|
INDArray |
NDArrayFactory.zeros(int rows,
int columns)
Creates a row vector with the specified number of columns
|
static INDArray |
Nd4j.zerosLike(INDArray arr)
Empty like
|
Modifier and Type | Method and Description |
---|---|
static ReferenceQueue<INDArray> |
Nd4j.refQueue()
The reference queue used for cleaning up
ndarrays
|
Modifier and Type | Method and Description |
---|---|
INDArray |
BaseNDArrayFactory.appendBias(INDArray... vectors)
Merge the vectors and append a bias.
|
static INDArray |
Nd4j.appendBias(INDArray... vectors) |
INDArray |
NDArrayFactory.appendBias(INDArray... vectors) |
static void |
DataTypeValidation.assertDouble(INDArray... d) |
static void |
DataTypeValidation.assertDouble(INDArray d) |
static void |
DataTypeValidation.assertFloat(INDArray... d2) |
static void |
DataTypeValidation.assertFloat(INDArray d2) |
static void |
DataTypeValidation.assertSameDataType(INDArray... indArrays) |
INDArray |
BlasWrapper.axpy(double da,
INDArray dx,
INDArray dy) |
INDArray |
BaseNDArrayFactory.bilinearProducts(INDArray curr,
INDArray in)
Returns a column vector where each entry is the nth bilinear
product of the nth slices of the two tensors.
|
static INDArray |
Nd4j.bilinearProducts(INDArray curr,
INDArray in)
Returns a column vector where each entry is the nth bilinear
product of the nth slices of the two tensors.
|
INDArray |
NDArrayFactory.bilinearProducts(INDArray curr,
INDArray in)
Returns a column vector where each entry is the nth bilinear
product of the nth slices of the two tensors.
|
static void |
Nd4j.clearNans(INDArray arr)
Clear nans from an ndarray
|
INDArray |
BaseNDArrayFactory.concat(int dimension,
INDArray... toConcat)
concatenate ndarrays along a dimension
|
static INDArray |
Nd4j.concat(int dimension,
INDArray... toConcat)
Concatneate ndarrays along a dimension
|
INDArray |
NDArrayFactory.concat(int dimension,
INDArray... toConcat)
Concatneate ndarrays along a dimension
|
void |
BaseNDArrayFactory.copy(INDArray a,
INDArray b)
Copy a to b
|
static void |
Nd4j.copy(INDArray a,
INDArray b)
Copy a to b
|
void |
NDArrayFactory.copy(INDArray a,
INDArray b)
Copy a to b
|
abstract IComplexNDArray |
BaseNDArrayFactory.createComplex(INDArray arr)
Create a complex ndarray from the passed in indarray
|
static IComplexNDArray |
Nd4j.createComplex(INDArray arr)
Create a complex ndarray from the passed in indarray
|
IComplexNDArray |
NDArrayFactory.createComplex(INDArray arr)
Create a complex ndarray from the passed in indarray
|
static IComplexNDArray |
Nd4j.createComplex(INDArray real,
INDArray imag)
Create a complex ndarray based on the
real and imaginary
|
static INDArray |
Nd4j.cumsum(INDArray compute) |
static INDArray |
Nd4j.cumsum(INDArray compute,
int dimension) |
static INDArray |
Nd4j.diag(INDArray x)
Creates a new matrix where the values of the given vector are the diagonal values of
the matrix if a vector is passed in, if a matrix is returns the kth diagonal
in the matrix
|
static INDArray |
Nd4j.diag(INDArray x,
int k)
Creates a new matrix where the values of the given vector are the diagonal values of
the matrix if a vector is passed in, if a matrix is returns the kth diagonal
in the matrix
|
static void |
Nd4j.doAlongDiagonal(INDArray x,
com.google.common.base.Function<Number,Number> func)
Perform an operation along a diagonal
|
static INDArray |
Nd4j.emptyLike(INDArray arr)
Empty like
|
INDArray |
BlasWrapper.gemm(double alpha,
INDArray a,
INDArray b,
double beta,
INDArray c)
************************************************************************
BLAS Level 3
|
INDArray |
BlasWrapper.gemv(double alpha,
INDArray a,
INDArray x,
double beta,
INDArray y)
************************************************************************
BLAS Level 2
|
INDArray |
BlasWrapper.ger(double alpha,
INDArray x,
INDArray y,
INDArray a) |
static boolean |
Nd4j.hasInvalidNumber(INDArray num)
Returns true if the given ndarray has either
an infinite or nan
|
INDArray |
BaseNDArrayFactory.hstack(INDArray... arrs)
Concatenates two matrices horizontally.
|
static INDArray |
Nd4j.hstack(INDArray... arrs)
Concatenates two matrices horizontally.
|
INDArray |
NDArrayFactory.hstack(INDArray... arrs)
Concatenates two matrices horizontally.
|
static INDArray |
Nd4j.max(INDArray compute) |
static INDArray |
Nd4j.max(INDArray compute,
int dimension) |
static INDArray |
Nd4j.mean(INDArray compute) |
static INDArray |
Nd4j.mean(INDArray compute,
int dimension) |
static INDArray |
Nd4j.min(INDArray compute) |
static INDArray |
Nd4j.min(INDArray compute,
int dimension) |
static INDArray |
Nd4j.norm1(INDArray compute) |
static INDArray |
Nd4j.norm1(INDArray compute,
int dimension) |
static INDArray |
Nd4j.norm2(INDArray compute) |
static INDArray |
Nd4j.norm2(INDArray compute,
int dimension) |
static INDArray |
Nd4j.normmax(INDArray compute) |
static INDArray |
Nd4j.normmax(INDArray compute,
int dimension) |
static INDArray |
Nd4j.onesLike(INDArray arr)
Ones like
|
static INDArray |
Nd4j.prod(INDArray compute) |
static INDArray |
Nd4j.prod(INDArray compute,
int dimension) |
static INDArray |
Nd4j.repeat(INDArray n,
int num)
Create an n x (shape)
ndarray where the ndarray is repeated num times
|
INDArray |
BaseNDArrayFactory.reverse(INDArray reverse)
Reverses the passed in matrix such that m[0] becomes m[m.length - 1] etc
|
static INDArray |
Nd4j.reverse(INDArray reverse)
Reverses the passed in matrix such that m[0] becomes m[m.length - 1] etc
|
INDArray |
NDArrayFactory.reverse(INDArray reverse)
Reverses the passed in matrix such that m[0] becomes m[m.length - 1] etc
|
INDArray |
BaseNDArrayFactory.rot(INDArray reverse)
Reverses the passed in matrix such that m[0] becomes m[m.length - 1] etc
|
static INDArray |
Nd4j.rot(INDArray reverse)
Reverses the passed in matrix such that m[0] becomes m[m.length - 1] etc
|
INDArray |
NDArrayFactory.rot(INDArray reverse)
Reverses the passed in matrix such that m[0] becomes m[m.length - 1] etc
|
void |
BaseNDArrayFactory.rot90(INDArray toRotate)
Rotate a matrix 90 degrees
|
static void |
Nd4j.rot90(INDArray toRotate)
Rotate a matrix 90 degrees
|
void |
NDArrayFactory.rot90(INDArray toRotate)
Rotate a matrix 90 degrees
|
void |
BlasWrapper.saxpy(double alpha,
INDArray x,
INDArray y) |
void |
BlasWrapper.saxpy(float alpha,
INDArray x,
INDArray y)
Abstraction over saxpy
|
INDArray |
BlasWrapper.scal(double alpha,
INDArray x) |
static void |
Nd4j.setParams(INDArray theta,
Collection<INDArray>... matrices)
Given a sequence of Iterators over a applyTransformToDestination of matrices, fill in all of
the matrices with the entries in the theta vector.
|
static void |
Nd4j.setParams(INDArray theta,
Iterator<? extends INDArray>... matrices)
Given a sequence of Iterators over a applyTransformToDestination of matrices, fill in all of
the matrices with the entries in the theta vector.
|
static int[] |
Nd4j.shape(INDArray arr)
Returns the shape of the ndarray
|
static INDArray |
Nd4j.sort(INDArray ndarray,
int dimension,
boolean ascending)
Sort an ndarray along a particular dimension
|
static INDArray[] |
Nd4j.sortWithIndices(INDArray ndarray,
int dimension,
boolean ascending)
Sort an ndarray along a particular dimension
|
static INDArray |
Nd4j.std(INDArray compute) |
static INDArray |
Nd4j.std(INDArray compute,
int dimension) |
static INDArray |
Nd4j.sum(INDArray compute) |
static INDArray |
Nd4j.sum(INDArray compute,
int dimension) |
int |
BlasWrapper.syevr(char jobz,
char range,
char uplo,
INDArray a,
double vl,
double vu,
int il,
int iu,
double abstol,
INDArray w,
INDArray z,
int[] isuppz) |
int |
BlasWrapper.syevx(char jobz,
char range,
char uplo,
INDArray a,
double vl,
double vu,
int il,
int iu,
double abstol,
INDArray w,
INDArray z) |
static INDArray |
Nd4j.tile(INDArray tile,
int... repeat)
An alias for repmat
|
INDArray |
BaseNDArrayFactory.toFlattened(INDArray... matrices) |
static INDArray |
Nd4j.toFlattened(INDArray... matrices)
Create a long row vector of all of the given ndarrays
|
INDArray |
NDArrayFactory.toFlattened(INDArray... matrices)
Flatten all of the ndarrays in to one long vector
|
protected static void |
BaseNDArrayFactory.validateConcat(int dimension,
INDArray... arrs) |
static INDArray |
Nd4j.var(INDArray compute) |
static INDArray |
Nd4j.var(INDArray compute,
int dimension) |
INDArray |
BaseNDArrayFactory.vstack(INDArray... arrs)
Concatenates two matrices vertically.
|
static INDArray |
Nd4j.vstack(INDArray... arrs)
Concatenates two matrices vertically.
|
INDArray |
NDArrayFactory.vstack(INDArray... arrs)
Concatenates two matrices vertically.
|
static void |
Nd4j.write(INDArray arr,
DataOutputStream dataOutputStream)
Write an ndarray to the specified outputstream
|
static void |
Nd4j.writeTxt(INDArray write,
String filePath,
String split)
Read line via input streams
|
static INDArray |
Nd4j.zerosLike(INDArray arr)
Empty like
|
Modifier and Type | Method and Description |
---|---|
abstract INDArray |
BaseNDArrayFactory.create(List<INDArray> list,
int[] shape)
Creates an ndarray with the specified shape
|
static INDArray |
Nd4j.create(List<INDArray> list,
int[] shape)
Creates an ndarray with the specified shape
|
INDArray |
NDArrayFactory.create(List<INDArray> list,
int[] shape)
Creates an ndarray with the specified shape
|
static INDArray |
Nd4j.create(List<INDArray> list,
int[] shape,
char ordering)
Creates an ndarray with the specified shape
|
INDArray |
NDArrayFactory.create(List<INDArray> list,
int[] shape,
char ordering) |
INDArray |
BaseNDArrayFactory.toFlattened(Collection<INDArray> matrices)
Returns a vector with all of the elements in every nd array
equal to the sum of the lengths of the ndarrays
|
static INDArray |
Nd4j.toFlattened(Collection<INDArray> matrices)
Create a long row vector of all of the given ndarrays
|
INDArray |
NDArrayFactory.toFlattened(Collection<INDArray> matrices)
/**
Returns a flattened ndarray with all of the elements in each ndarray
regardless of dimension
|
Modifier and Type | Method and Description |
---|---|
IComplexNDArray |
BaseFFTInstance.fft(INDArray input)
1d discrete fourier op, note that this will
throw an exception if the passed in input
isn't a vector.
|
IComplexNDArray |
FFTInstance.fft(INDArray input)
1d discrete fourier op, note that this will
throw an exception if the passed in input
isn't a vector.
|
static IComplexNDArray |
FFT.fft(INDArray input)
1d discrete fourier op, note that this will
throw an exception if the passed in input
isn't a vector.
|
IComplexNDArray |
BaseFFTInstance.fft(INDArray transform,
int numElements)
FFT along a particular dimension
|
IComplexNDArray |
FFTInstance.fft(INDArray transform,
int numElements)
FFT along a particular dimension
|
static IComplexNDArray |
FFT.fft(INDArray transform,
int numElements)
FFT along a particular dimension
|
IComplexNDArray |
FFTInstance.fft(INDArray transform,
int numElements,
int dimension)
FFT along a particular dimension
|
static IComplexNDArray |
FFT.fft(INDArray transform,
int numElements,
int dimension)
FFT along a particular dimension
|
IComplexNDArray |
DefaultFFTInstance.fft(INDArray transform,
int numElements,
int dimension)
FFT along a particular dimension
|
IComplexNDArray |
BaseFFTInstance.fftn(INDArray transform)
FFT on the whole array (n is equal the first dimension shape)
|
IComplexNDArray |
FFTInstance.fftn(INDArray transform)
FFT on the whole array (n is equal the first dimension shape)
|
static IComplexNDArray |
FFT.fftn(INDArray transform)
FFT on the whole array (n is equal the first dimension shape)
|
IComplexNDArray |
BaseFFTInstance.fftn(INDArray transform,
int dimension,
int numElements)
Computes the fft along the first non singleton dimension of op
when it is a matrix
|
IComplexNDArray |
FFTInstance.fftn(INDArray transform,
int dimension,
int numElements)
Computes the fft along the first non singleton dimension of op
when it is a matrix
|
static IComplexNDArray |
FFT.fftn(INDArray transform,
int dimension,
int numElements)
Computes the fft along the first non singleton dimension of op
when it is a matrix
|
protected Op |
DefaultFFTInstance.getFftOp(INDArray arr,
int n) |
protected Op |
DefaultFFTInstance.getIfftOp(INDArray arr,
int n) |
IComplexNDArray |
FFTInstance.ifft(INDArray transform,
int numElements)
FFT along a particular dimension
|
static IComplexNDArray |
FFT.ifft(INDArray transform,
int numElements)
FFT along a particular dimension
|
IComplexNDArray |
DefaultFFTInstance.ifft(INDArray transform,
int numElements)
FFT along a particular dimension
|
IComplexNDArray |
FFTInstance.ifft(INDArray transform,
int numElements,
int dimension)
IFFT along a particular dimension
|
static IComplexNDArray |
FFT.ifft(INDArray transform,
int numElements,
int dimension)
IFFT along a particular dimension
|
IComplexNDArray |
DefaultFFTInstance.ifft(INDArray transform,
int numElements,
int dimension)
IFFT along a particular dimension
|
IComplexNDArray |
BaseFFTInstance.ifftn(INDArray transform) |
IComplexNDArray |
FFTInstance.ifftn(INDArray transform) |
IComplexNDArray |
BaseFFTInstance.ifftn(INDArray transform,
int dimension,
int numElements)
ND IFFT, computes along the first on singleton dimension of
op
|
IComplexNDArray |
FFTInstance.ifftn(INDArray transform,
int dimension,
int numElements)
ND IFFT, computes along the first on singleton dimension of
op
|
static IComplexNDArray |
FFT.ifftn(INDArray transform,
int dimension,
int numElements)
ND IFFT, computes along the first on singleton dimension of
op
|
Modifier and Type | Method and Description |
---|---|
static boolean |
BooleanIndexing.and(INDArray n,
Condition cond)
And over the whole ndarray given some condition
|
static void |
BooleanIndexing.applyWhere(INDArray to,
Condition condition,
com.google.common.base.Function<Number,Number> function)
Based on the matching elements
op to based on condition to with function function
|
static NDArrayIndex[] |
NDArrayIndex.create(INDArray index)
Create from a matrix.
|
static NDArrayIndex[] |
Indices.createFromStartAndEnd(INDArray start,
INDArray end)
Create an n dimensional index
based on the given interval indices.
|
static NDArrayIndex[] |
Indices.createFromStartAndEnd(INDArray start,
INDArray end,
boolean inclusive)
Create indices representing intervals
along each dimension
|
static int[] |
Indices.linearIndices(INDArray arr)
Calculate the linear indices for an
ndarray
|
static int |
Indices.linearOffset(int index,
INDArray arr)
Compute the linear offset
for an index in an ndarray.
|
static boolean |
BooleanIndexing.or(INDArray n,
Condition cond)
Or over the whole ndarray given some condition
|
static int |
Indices.rowNumber(int index,
INDArray arr)
Compute the linear offset
for an index in an ndarray.
|
Modifier and Type | Field and Description |
---|---|
INDArray |
AdaGrad.historicalGradient |
Modifier and Type | Method and Description |
---|---|
INDArray |
AdaGrad.getGradient(INDArray gradient)
Gets feature specific learning rates
Adagrad keeps a history of gradients being passed in.
|
INDArray |
AdaGrad.getGradient(INDArray gradient,
int slice,
int[] shape)
Gets feature specific learning rates
Adagrad keeps a history of gradients being passed in.
|
INDArray |
AdaGrad.getHistoricalGradient() |
Modifier and Type | Method and Description |
---|---|
INDArray |
AdaGrad.getGradient(INDArray gradient)
Gets feature specific learning rates
Adagrad keeps a history of gradients being passed in.
|
INDArray |
AdaGrad.getGradient(INDArray gradient,
int slice,
int[] shape)
Gets feature specific learning rates
Adagrad keeps a history of gradients being passed in.
|
void |
AdaGrad.setHistoricalGradient(INDArray historicalGradient) |
Modifier and Type | Method and Description |
---|---|
static double |
LossFunctions.score(INDArray labels,
LossFunctions.LossFunction lossFunction,
INDArray z,
double l2,
boolean useRegularization)
Generic scoring function.
|
Modifier and Type | Method and Description |
---|---|
static INDArray |
Transforms.abs(INDArray ndArray)
Abs funciton
|
static INDArray |
Transforms.abs(INDArray ndArray,
boolean dup)
Abs function
|
static INDArray |
Transforms.avgPooling(INDArray toPool,
int[] stride)
Pooled expectations(avg)
|
static INDArray |
Transforms.ceiling(INDArray ndArray)
Binary matrix of whether the number at a given index is greater than
|
static INDArray |
Transforms.ceiling(INDArray ndArray,
boolean copyOnOps)
Ceiling function
|
static INDArray |
Transforms.downSample(INDArray d1,
int[] stride)
Down sampling a signal
for the first stride dimensions
|
static INDArray |
Transforms.eps(INDArray ndArray) |
static INDArray |
Transforms.eps(INDArray ndArray,
boolean dup)
Eps function
|
static INDArray |
Transforms.exp(INDArray ndArray) |
static INDArray |
Transforms.exp(INDArray ndArray,
boolean dup)
Exp function
|
static INDArray |
Transforms.floor(INDArray ndArray)
Binary matrix of whether the number at a given index is greater than
|
static INDArray |
Transforms.floor(INDArray ndArray,
boolean dup)
Floor function
|
static INDArray |
Transforms.greaterThanOrEqual(INDArray first,
INDArray ndArray)
1 if greater than or equal to 0 otherwise (at each element)
|
static INDArray |
Transforms.greaterThanOrEqual(INDArray first,
INDArray ndArray,
boolean dup)
Eps function
|
static INDArray |
Transforms.hardTanh(INDArray ndArray) |
static INDArray |
Transforms.hardTanh(INDArray ndArray,
boolean dup)
Hard tanh
|
static INDArray |
Transforms.identity(INDArray ndArray) |
static INDArray |
Transforms.identity(INDArray ndArray,
boolean dup)
Identity function
|
static INDArray |
Transforms.lessThanOrEqual(INDArray first,
INDArray ndArray)
1 if less than or equal to 0 otherwise (at each element)
|
static INDArray |
Transforms.lessThanOrEqual(INDArray first,
INDArray ndArray,
boolean dup)
Eps function
|
static INDArray |
Transforms.log(INDArray ndArray) |
static INDArray |
Transforms.log(INDArray ndArray,
boolean dup)
Log function
|
static INDArray |
Transforms.max(INDArray ndArray,
double k)
Stabilize to be within a range of k
|
static INDArray |
Transforms.max(INDArray ndArray,
double k,
boolean dup)
Stabilize to be within a range of k
|
static INDArray |
Transforms.maxPool(INDArray input,
int[] ds,
boolean ignoreBorder)
Max poolingi
|
static INDArray |
Transforms.neg(INDArray ndArray)
Returns the negative of an ndarray
|
static INDArray |
Transforms.neg(INDArray ndArray,
boolean dup)
Negative
|
static INDArray |
Transforms.normalizeZeroMeanAndUnitVariance(INDArray toNormalize)
Normalize data to zero mean and unit variance
substract by the mean and divide by the standard deviation
|
static INDArray |
Transforms.pow(INDArray ndArray,
Number power)
Pow function
|
static INDArray |
Transforms.pow(INDArray ndArray,
Number power,
boolean dup)
Pow function
|
static INDArray |
Transforms.round(INDArray ndArray)
Rounding function
|
static INDArray |
Transforms.round(INDArray ndArray,
boolean dup)
Rounding function
|
static INDArray |
Transforms.sigmoid(INDArray ndArray)
Sigmoid function
|
static INDArray |
Transforms.sigmoid(INDArray ndArray,
boolean dup)
Sigmoid function
|
static INDArray |
Transforms.sign(INDArray toSign)
Signum function of this ndarray
|
static INDArray |
Transforms.sign(INDArray toSign,
boolean dup)
Signum function of this ndarray
|
static INDArray |
Transforms.sqrt(INDArray ndArray)
Sqrt function
|
static INDArray |
Transforms.sqrt(INDArray ndArray,
boolean dup)
Sqrt function
|
static INDArray |
Transforms.stabilize(INDArray ndArray,
double k) |
static INDArray |
Transforms.stabilize(INDArray ndArray,
double k,
boolean dup)
Stabilize to be within a range of k
|
static INDArray |
Transforms.sumPooling(INDArray toPool,
int[] stride)
Pooled expectations(sum)
|
static INDArray |
Transforms.tanh(INDArray ndArray)
Tanh function
|
static INDArray |
Transforms.tanh(INDArray ndArray,
boolean dup)
Tanh function
|
static INDArray |
Transforms.unitVec(INDArray toScale)
Scale by 1 / norm2 of the matrix
|
static INDArray |
Transforms.upSample(INDArray d,
INDArray scale)
Upsampling a signal (specifically the first 2 dimensions)
|
Modifier and Type | Method and Description |
---|---|
static INDArray |
Transforms.abs(INDArray ndArray)
Abs funciton
|
static INDArray |
Transforms.abs(INDArray ndArray,
boolean dup)
Abs function
|
static INDArray |
Transforms.avgPooling(INDArray toPool,
int[] stride)
Pooled expectations(avg)
|
static INDArray |
Transforms.ceiling(INDArray ndArray)
Binary matrix of whether the number at a given index is greater than
|
static INDArray |
Transforms.ceiling(INDArray ndArray,
boolean copyOnOps)
Ceiling function
|
static double |
Transforms.cosineSim(INDArray d1,
INDArray d2)
Cosine similarity
|
static INDArray |
Transforms.downSample(INDArray d1,
int[] stride)
Down sampling a signal
for the first stride dimensions
|
static INDArray |
Transforms.eps(INDArray ndArray) |
static INDArray |
Transforms.eps(INDArray ndArray,
boolean dup)
Eps function
|
static INDArray |
Transforms.exp(INDArray ndArray) |
static INDArray |
Transforms.exp(INDArray ndArray,
boolean dup)
Exp function
|
static INDArray |
Transforms.floor(INDArray ndArray)
Binary matrix of whether the number at a given index is greater than
|
static INDArray |
Transforms.floor(INDArray ndArray,
boolean dup)
Floor function
|
static INDArray |
Transforms.greaterThanOrEqual(INDArray first,
INDArray ndArray)
1 if greater than or equal to 0 otherwise (at each element)
|
static INDArray |
Transforms.greaterThanOrEqual(INDArray first,
INDArray ndArray,
boolean dup)
Eps function
|
static INDArray |
Transforms.hardTanh(INDArray ndArray) |
static INDArray |
Transforms.hardTanh(INDArray ndArray,
boolean dup)
Hard tanh
|
static INDArray |
Transforms.identity(INDArray ndArray) |
static INDArray |
Transforms.identity(INDArray ndArray,
boolean dup)
Identity function
|
static INDArray |
Transforms.lessThanOrEqual(INDArray first,
INDArray ndArray)
1 if less than or equal to 0 otherwise (at each element)
|
static INDArray |
Transforms.lessThanOrEqual(INDArray first,
INDArray ndArray,
boolean dup)
Eps function
|
static INDArray |
Transforms.log(INDArray ndArray) |
static INDArray |
Transforms.log(INDArray ndArray,
boolean dup)
Log function
|
static INDArray |
Transforms.max(INDArray ndArray,
double k)
Stabilize to be within a range of k
|
static INDArray |
Transforms.max(INDArray ndArray,
double k,
boolean dup)
Stabilize to be within a range of k
|
static INDArray |
Transforms.maxPool(INDArray input,
int[] ds,
boolean ignoreBorder)
Max poolingi
|
static INDArray |
Transforms.neg(INDArray ndArray)
Returns the negative of an ndarray
|
static INDArray |
Transforms.neg(INDArray ndArray,
boolean dup)
Negative
|
static INDArray |
Transforms.normalizeZeroMeanAndUnitVariance(INDArray toNormalize)
Normalize data to zero mean and unit variance
substract by the mean and divide by the standard deviation
|
static INDArray |
Transforms.pow(INDArray ndArray,
Number power)
Pow function
|
static INDArray |
Transforms.pow(INDArray ndArray,
Number power,
boolean dup)
Pow function
|
static INDArray |
Transforms.round(INDArray ndArray)
Rounding function
|
static INDArray |
Transforms.round(INDArray ndArray,
boolean dup)
Rounding function
|
static INDArray |
Transforms.sigmoid(INDArray ndArray)
Sigmoid function
|
static INDArray |
Transforms.sigmoid(INDArray ndArray,
boolean dup)
Sigmoid function
|
static INDArray |
Transforms.sign(INDArray toSign)
Signum function of this ndarray
|
static INDArray |
Transforms.sign(INDArray toSign,
boolean dup)
Signum function of this ndarray
|
static INDArray |
Transforms.sqrt(INDArray ndArray)
Sqrt function
|
static INDArray |
Transforms.sqrt(INDArray ndArray,
boolean dup)
Sqrt function
|
static INDArray |
Transforms.stabilize(INDArray ndArray,
double k) |
static INDArray |
Transforms.stabilize(INDArray ndArray,
double k,
boolean dup)
Stabilize to be within a range of k
|
static INDArray |
Transforms.sumPooling(INDArray toPool,
int[] stride)
Pooled expectations(sum)
|
static INDArray |
Transforms.tanh(INDArray ndArray)
Tanh function
|
static INDArray |
Transforms.tanh(INDArray ndArray,
boolean dup)
Tanh function
|
static INDArray |
Transforms.unitVec(INDArray toScale)
Scale by 1 / norm2 of the matrix
|
static INDArray |
Transforms.upSample(INDArray d,
INDArray scale)
Upsampling a signal (specifically the first 2 dimensions)
|
Modifier and Type | Method and Description |
---|---|
static INDArray |
NDArrayUtil.center(INDArray arr,
int[] shape)
Center an array
|
static INDArray |
NDArrayUtil.exp(INDArray toExp) |
static INDArray |
NDArrayUtil.expi(INDArray toExp)
Returns an exponential version of this ndarray
|
static INDArray |
NDArrayUtil.padWithZeros(INDArray nd,
int[] targetShape)
Pads an INDArray with zeros
|
static INDArray |
ArrayUtil.toNDArray(int[] nums) |
static INDArray |
ArrayUtil.toNDArray(int[][] nums) |
static INDArray |
FeatureUtil.toOutcomeMatrix(int[] index,
int numOutcomes)
Creates an out come vector from the specified inputs
|
static INDArray |
FeatureUtil.toOutcomeVector(int index,
int numOutcomes)
Creates an out come vector from the specified inputs
|
static INDArray |
NDArrayUtil.truncate(INDArray nd,
int n,
int dimension)
Truncates an INDArray to the specified shape.
|
Modifier and Type | Method and Description |
---|---|
static void |
LinAlgExceptions.assertColumns(INDArray n,
INDArray n2) |
static void |
LinAlgExceptions.assertMultiplies(INDArray nd1,
INDArray nd2)
Asserts matrix multiply rules (columns of left == rows of right)
|
static void |
LinAlgExceptions.assertRows(INDArray n,
INDArray n2) |
static void |
LinAlgExceptions.assertSameShape(INDArray n,
INDArray n2) |
static void |
LinAlgExceptions.assertValidNum(INDArray n) |
static INDArray |
NDArrayUtil.center(INDArray arr,
int[] shape)
Center an array
|
static INDArray |
NDArrayUtil.exp(INDArray toExp) |
static INDArray |
NDArrayUtil.expi(INDArray toExp)
Returns an exponential version of this ndarray
|
static int |
LinearUtil.linearStride(INDArray arr)
When needing to look at an array that's a matrix or some other tensor
we typically need to map those arrays element wise (take axpy or uploading data as a linear buffer for example)
This handles finding the proper offset for the situations where a >= 2d array needs to be interpreted in a linear
form that may not be used outside of those contexts.
|
static void |
FeatureUtil.normalizeMatrix(INDArray toNormalize) |
static INDArray |
NDArrayUtil.padWithZeros(INDArray nd,
int[] targetShape)
Pads an INDArray with zeros
|
static void |
FeatureUtil.scaleByMax(INDArray toScale)
Divides each row by its max
|
static void |
FeatureUtil.scaleMinMax(double min,
double max,
INDArray toScale)
Scales the ndarray columns
to the given min/max values
|
static int[] |
ArrayUtil.toInts(INDArray n) |
static INDArray |
NDArrayUtil.truncate(INDArray nd,
int n,
int dimension)
Truncates an INDArray to the specified shape.
|
Copyright © 2015. All Rights Reserved.