public class Create extends DynamicCustomOp
DynamicCustomOp.DynamicCustomOpsBuilder| Modifier and Type | Field and Description |
|---|---|
protected boolean |
initialize |
protected char |
order |
protected DataType |
outputType |
axis, bArguments, dArguments, iArguments, inplaceCall, inputArguments, outputArguments, outputVariables, sArguments, tArgumentsdimensions, extraArgs, inPlace, ownName, ownNameSetWithDefault, sameDiff, scalarValue| Constructor and Description |
|---|
Create() |
Create(INDArray shape,
boolean initialize,
DataType dataType) |
Create(@NonNull INDArray shape,
char order,
boolean initialize,
DataType dataType) |
Create(INDArray shape,
DataType dataType) |
Create(INDArray shape,
DataType dataType,
String order,
boolean initialize) |
Create(SameDiff sd,
SDVariable shape,
DataType dataType) |
Create(SameDiff sd,
SDVariable shape,
DataType dataType,
String order,
boolean initialize) |
Create(String name,
SameDiff sameDiff,
SDVariable input,
boolean initialize) |
Create(String name,
SameDiff sameDiff,
SDVariable input,
char order,
boolean initialize,
DataType dataType) |
| Modifier and Type | Method and Description |
|---|---|
protected void |
addArgs() |
List<DataType> |
calculateOutputDataTypes(List<DataType> dataTypes)
Calculate the data types for the output arrays.
|
List<SDVariable> |
doDiff(List<SDVariable> i_v)
The actual implementation for automatic differentiation.
|
void |
initFromTensorFlow(NodeDef nodeDef,
SameDiff initWith,
Map<String,AttrValue> attributesForNode,
GraphDef graph)
Initialize the function from the given
NodeDef |
String |
onnxName()
The opName of this function in onnx
|
String |
opName()
This method returns op opName as string
|
String |
tensorflowName()
The opName of this function tensorflow
|
addBArgument, addDArgument, addIArgument, addIArgument, addInputArgument, addOutputArgument, addSArgument, addTArgument, assertValidForExecution, bArgs, builder, calculateOutputShape, calculateOutputShape, clearArrays, computeArrays, configureFromArguments, dArgs, generateFake, generateFake, getBArgument, getDescriptor, getIArgument, getInputArgument, getOutputArgument, getSArgument, getTArgument, getValue, iArgs, initFromOnnx, inputArguments, mappingsForFunction, numBArguments, numDArguments, numIArguments, numInputArguments, numOutputArguments, numSArguments, numTArguments, opHash, opNum, opType, outputArguments, outputVariables, outputVariables, propertiesForFunction, removeIArgument, removeInputArgument, removeOutputArgument, removeSArgument, removeTArgument, sArgs, setInputArgument, setInputArguments, setOutputArgument, setPropertiesForFunction, setValueFor, tArgs, toString, wrapFilterNull, wrapOrNull, wrapOrNullarg, arg, argNames, args, attributeAdaptersForFunction, configFieldName, configureWithSameDiff, diff, dup, equals, getBooleanFromProperty, getDoubleValueFromProperty, getIntValueFromProperty, getLongValueFromProperty, getNumOutputs, getStringFromProperty, hashCode, isConfigProperties, larg, onnxNames, outputs, outputVariable, outputVariablesNames, rarg, replaceArg, setInstanceId, tensorflowNamesclone, finalize, getClass, notify, notifyAll, wait, wait, waitisInplaceCallprotected boolean initialize
protected char order
protected DataType outputType
public Create()
public Create(String name, SameDiff sameDiff, SDVariable input, boolean initialize)
public Create(String name, SameDiff sameDiff, SDVariable input, char order, boolean initialize, DataType dataType)
public Create(@NonNull
@NonNull INDArray shape,
char order,
boolean initialize,
DataType dataType)
public Create(SameDiff sd, SDVariable shape, DataType dataType)
public Create(SameDiff sd, SDVariable shape, DataType dataType, String order, boolean initialize)
protected void addArgs()
public String opName()
DynamicCustomOpopName in interface CustomOpopName in class DynamicCustomOppublic String onnxName()
DifferentialFunctiononnxName in class DynamicCustomOppublic String tensorflowName()
DifferentialFunctiontensorflowName in class DynamicCustomOppublic void initFromTensorFlow(NodeDef nodeDef, SameDiff initWith, Map<String,AttrValue> attributesForNode, GraphDef graph)
DifferentialFunctionNodeDefinitFromTensorFlow in class DynamicCustomOppublic List<SDVariable> doDiff(List<SDVariable> i_v)
DifferentialFunctiondoDiff in class DynamicCustomOppublic List<DataType> calculateOutputDataTypes(List<DataType> dataTypes)
DifferentialFunctionDifferentialFunction.calculateOutputShape(), this method differs in that it does not
require the input arrays to be populated.
This is important as it allows us to do greedy datatype inference for the entire net - even if arrays are not
available.calculateOutputDataTypes in class DifferentialFunctiondataTypes - The data types of the inputsCopyright © 2022. All rights reserved.