public class MeshGrid extends DynamicCustomOp
DynamicCustomOp.DynamicCustomOpsBuilderaxis, bArguments, dArguments, iArguments, inplaceCall, inputArguments, outputArguments, outputVariables, sArguments, tArgumentsdimensions, extraArgs, inPlace, ownName, ownNameSetWithDefault, sameDiff, scalarValue| Constructor and Description |
|---|
MeshGrid() |
MeshGrid(@NonNull INDArray[] inputs,
boolean cartesian) |
MeshGrid(SameDiff sd,
boolean cartesian,
SDVariable... inputs) |
MeshGrid(SameDiff sd,
SDVariable[] inputs,
boolean cartesian) |
| Modifier and Type | Method and Description |
|---|---|
List<DataType> |
calculateOutputDataTypes(List<DataType> dataTypes)
Calculate the data types for the output arrays.
|
List<SDVariable> |
doDiff(List<SDVariable> gradients)
The actual implementation for automatic differentiation.
|
int |
getNumOutputs() |
String |
opName()
This method returns op opName as string
|
addBArgument, addDArgument, addIArgument, addIArgument, addInputArgument, addOutputArgument, addSArgument, addTArgument, assertValidForExecution, bArgs, builder, calculateOutputShape, calculateOutputShape, clearArrays, computeArrays, configureFromArguments, dArgs, generateFake, generateFake, getBArgument, getDescriptor, getIArgument, getInputArgument, getOutputArgument, getSArgument, getTArgument, getValue, iArgs, initFromOnnx, initFromTensorFlow, inputArguments, mappingsForFunction, numBArguments, numDArguments, numIArguments, numInputArguments, numOutputArguments, numSArguments, numTArguments, onnxName, opHash, opNum, opType, outputArguments, outputVariables, outputVariables, propertiesForFunction, removeIArgument, removeInputArgument, removeOutputArgument, removeSArgument, removeTArgument, sArgs, setInputArgument, setInputArguments, setOutputArgument, setPropertiesForFunction, setValueFor, tArgs, tensorflowName, toString, wrapFilterNull, wrapOrNull, wrapOrNullarg, arg, argNames, args, attributeAdaptersForFunction, configFieldName, configureWithSameDiff, diff, dup, equals, getBooleanFromProperty, getDoubleValueFromProperty, getIntValueFromProperty, getLongValueFromProperty, getStringFromProperty, hashCode, isConfigProperties, larg, onnxNames, outputs, outputVariable, outputVariablesNames, rarg, replaceArg, setInstanceId, tensorflowNamesclone, finalize, getClass, notify, notifyAll, wait, wait, waitisInplaceCallpublic MeshGrid(SameDiff sd, boolean cartesian, SDVariable... inputs)
sd - cartesian - If true: broadcast dimensions for first two dimensions are swappedinputs - public MeshGrid(SameDiff sd, SDVariable[] inputs, boolean cartesian)
public MeshGrid(@NonNull
@NonNull INDArray[] inputs,
boolean cartesian)
public MeshGrid()
public String opName()
DynamicCustomOpopName in interface CustomOpopName in class DynamicCustomOppublic List<SDVariable> doDiff(List<SDVariable> gradients)
DifferentialFunctiondoDiff in class DynamicCustomOppublic int getNumOutputs()
getNumOutputs in class DifferentialFunctionpublic List<DataType> calculateOutputDataTypes(List<DataType> dataTypes)
DifferentialFunctionDifferentialFunction.calculateOutputShape(), this method differs in that it does not
require the input arrays to be populated.
This is important as it allows us to do greedy datatype inference for the entire net - even if arrays are not
available.calculateOutputDataTypes in class DifferentialFunctiondataTypes - The data types of the inputsCopyright © 2022. All rights reserved.