public class ParallelStack extends DynamicCustomOp
DynamicCustomOp.DynamicCustomOpsBuilderaxis, bArguments, dArguments, iArguments, inplaceCall, inputArguments, outputArguments, outputVariables, sArguments, tArgumentsdimensions, extraArgs, inPlace, ownName, ownNameSetWithDefault, sameDiff, scalarValue| Constructor and Description |
|---|
ParallelStack() |
ParallelStack(INDArray[] inputs) |
ParallelStack(SameDiff sameDiff,
SDVariable[] values) |
| Modifier and Type | Method and Description |
|---|---|
List<DataType> |
calculateOutputDataTypes(List<DataType> dataTypes)
Calculate the data types for the output arrays.
|
void |
initFromOnnx(Onnx.NodeProto node,
SameDiff initWith,
Map<String,Onnx.AttributeProto> attributesForNode,
Onnx.GraphProto graph)
Iniitialize the function from the given
Onnx.NodeProto |
void |
initFromTensorFlow(NodeDef nodeDef,
SameDiff initWith,
Map<String,AttrValue> attributesForNode,
GraphDef graph)
Initialize the function from the given
NodeDef |
Map<String,Map<String,PropertyMapping>> |
mappingsForFunction()
Returns the mappings for a given function (
for tensorflow and onnx import mapping properties
of this function).
|
String |
opName()
This method returns op opName as string
|
addBArgument, addDArgument, addIArgument, addIArgument, addInputArgument, addOutputArgument, addSArgument, addTArgument, assertValidForExecution, bArgs, builder, calculateOutputShape, calculateOutputShape, clearArrays, computeArrays, configureFromArguments, dArgs, doDiff, generateFake, generateFake, getBArgument, getDescriptor, getIArgument, getInputArgument, getOutputArgument, getSArgument, getTArgument, getValue, iArgs, inputArguments, numBArguments, numDArguments, numIArguments, numInputArguments, numOutputArguments, numSArguments, numTArguments, onnxName, opHash, opNum, opType, outputArguments, outputVariables, outputVariables, propertiesForFunction, removeIArgument, removeInputArgument, removeOutputArgument, removeSArgument, removeTArgument, sArgs, setInputArgument, setInputArguments, setOutputArgument, setPropertiesForFunction, setValueFor, tArgs, tensorflowName, toString, wrapFilterNull, wrapOrNull, wrapOrNullarg, arg, argNames, args, attributeAdaptersForFunction, configFieldName, configureWithSameDiff, diff, dup, equals, getBooleanFromProperty, getDoubleValueFromProperty, getIntValueFromProperty, getLongValueFromProperty, getNumOutputs, getStringFromProperty, hashCode, isConfigProperties, larg, onnxNames, outputs, outputVariable, outputVariablesNames, rarg, replaceArg, setInstanceId, tensorflowNamesclone, finalize, getClass, notify, notifyAll, wait, wait, waitisInplaceCallpublic ParallelStack()
public ParallelStack(SameDiff sameDiff, SDVariable[] values)
public ParallelStack(INDArray[] inputs)
public String opName()
DynamicCustomOpopName in interface CustomOpopName in class DynamicCustomOppublic void initFromTensorFlow(NodeDef nodeDef, SameDiff initWith, Map<String,AttrValue> attributesForNode, GraphDef graph)
DifferentialFunctionNodeDefinitFromTensorFlow in class DynamicCustomOppublic void initFromOnnx(Onnx.NodeProto node, SameDiff initWith, Map<String,Onnx.AttributeProto> attributesForNode, Onnx.GraphProto graph)
DifferentialFunctionOnnx.NodeProtoinitFromOnnx in class DynamicCustomOppublic Map<String,Map<String,PropertyMapping>> mappingsForFunction()
DifferentialFunctionmappingsForFunction in class DynamicCustomOppublic List<DataType> calculateOutputDataTypes(List<DataType> dataTypes)
DifferentialFunctionDifferentialFunction.calculateOutputShape(), this method differs in that it does not
require the input arrays to be populated.
This is important as it allows us to do greedy datatype inference for the entire net - even if arrays are not
available.calculateOutputDataTypes in class DifferentialFunctiondataTypes - The data types of the inputsCopyright © 2022. All rights reserved.