public class SetShape extends DynamicCustomOp
DynamicCustomOp.DynamicCustomOpsBuilderaxis, bArguments, dArguments, iArguments, inplaceCall, inputArguments, outputArguments, outputVariables, sArguments, tArgumentsdimensions, extraArgs, inPlace, ownName, ownNameSetWithDefault, sameDiff, scalarValue| Constructor and Description |
|---|
SetShape() |
SetShape(INDArray in,
INDArray shape) |
SetShape(INDArray in,
INDArray shape,
INDArray out) |
SetShape(SameDiff sameDiff,
SDVariable input,
SDVariable shape) |
SetShape(SameDiff sameDiff,
SDVariable input,
SDVariable shape,
boolean inPlace) |
| Modifier and Type | Method and Description |
|---|---|
List<DataType> |
calculateOutputDataTypes(List<DataType> dataTypes)
Calculate the data types for the output arrays.
|
List<SDVariable> |
doDiff(List<SDVariable> i_v)
The actual implementation for automatic differentiation.
|
int |
getNumOutputs() |
void |
initFromOnnx(Onnx.NodeProto node,
SameDiff initWith,
Map<String,Onnx.AttributeProto> attributesForNode,
Onnx.GraphProto graph)
Iniitialize the function from the given
Onnx.NodeProto |
void |
initFromTensorFlow(NodeDef nodeDef,
SameDiff initWith,
Map<String,AttrValue> attributesForNode,
GraphDef graph)
Initialize the function from the given
NodeDef |
String |
onnxName()
The opName of this function in onnx
|
String |
opName()
This method returns op opName as string
|
Op.Type |
opType()
The type of the op
|
String |
tensorflowName()
The opName of this function tensorflow
|
addBArgument, addDArgument, addIArgument, addIArgument, addInputArgument, addOutputArgument, addSArgument, addTArgument, assertValidForExecution, bArgs, builder, calculateOutputShape, calculateOutputShape, clearArrays, computeArrays, configureFromArguments, dArgs, generateFake, generateFake, getBArgument, getDescriptor, getIArgument, getInputArgument, getOutputArgument, getSArgument, getTArgument, getValue, iArgs, inputArguments, mappingsForFunction, numBArguments, numDArguments, numIArguments, numInputArguments, numOutputArguments, numSArguments, numTArguments, opHash, opNum, outputArguments, outputVariables, outputVariables, propertiesForFunction, removeIArgument, removeInputArgument, removeOutputArgument, removeSArgument, removeTArgument, sArgs, setInputArgument, setInputArguments, setOutputArgument, setPropertiesForFunction, setValueFor, tArgs, toString, wrapFilterNull, wrapOrNull, wrapOrNullarg, arg, argNames, args, attributeAdaptersForFunction, configFieldName, configureWithSameDiff, diff, dup, equals, getBooleanFromProperty, getDoubleValueFromProperty, getIntValueFromProperty, getLongValueFromProperty, getStringFromProperty, hashCode, isConfigProperties, larg, onnxNames, outputs, outputVariable, outputVariablesNames, rarg, replaceArg, setInstanceId, tensorflowNamesclone, finalize, getClass, notify, notifyAll, wait, wait, waitisInplaceCallpublic SetShape()
public SetShape(SameDiff sameDiff, SDVariable input, SDVariable shape)
public SetShape(SameDiff sameDiff, SDVariable input, SDVariable shape, boolean inPlace)
public String onnxName()
DifferentialFunctiononnxName in class DynamicCustomOppublic String opName()
DynamicCustomOpopName in interface CustomOpopName in class DynamicCustomOppublic String tensorflowName()
DifferentialFunctiontensorflowName in class DynamicCustomOppublic Op.Type opType()
DifferentialFunctionopType in class DynamicCustomOppublic void initFromTensorFlow(NodeDef nodeDef, SameDiff initWith, Map<String,AttrValue> attributesForNode, GraphDef graph)
DifferentialFunctionNodeDefinitFromTensorFlow in class DynamicCustomOppublic void initFromOnnx(Onnx.NodeProto node, SameDiff initWith, Map<String,Onnx.AttributeProto> attributesForNode, Onnx.GraphProto graph)
DifferentialFunctionOnnx.NodeProtoinitFromOnnx in class DynamicCustomOppublic List<SDVariable> doDiff(List<SDVariable> i_v)
DifferentialFunctiondoDiff in class DynamicCustomOppublic List<DataType> calculateOutputDataTypes(List<DataType> dataTypes)
DifferentialFunctionDifferentialFunction.calculateOutputShape(), this method differs in that it does not
require the input arrays to be populated.
This is important as it allows us to do greedy datatype inference for the entire net - even if arrays are not
available.calculateOutputDataTypes in class DifferentialFunctiondataTypes - The data types of the inputspublic int getNumOutputs()
getNumOutputs in class DifferentialFunctionCopyright © 2022. All rights reserved.