public class Slice extends DynamicCustomOp
DynamicCustomOp.DynamicCustomOpsBuilderaxis, bArguments, dArguments, iArguments, inplaceCall, inputArguments, outputArguments, outputVariables, sArguments, tArgumentsdimensions, extraArgs, inPlace, ownName, ownNameSetWithDefault, sameDiff, scalarValue| Constructor and Description |
|---|
Slice() |
Slice(@NonNull INDArray input,
@NonNull INDArray begin,
@NonNull INDArray end) |
Slice(INDArray input,
int[] begin,
int... size) |
Slice(SameDiff sameDiff,
@NonNull SDVariable input,
@NonNull int[] begin,
@NonNull int[] size) |
Slice(SameDiff sameDiff,
@NonNull SDVariable input,
@NonNull SDVariable begin,
@NonNull SDVariable end) |
| Modifier and Type | Method and Description |
|---|---|
List<DataType> |
calculateOutputDataTypes(List<DataType> dataTypes)
Calculate the data types for the output arrays.
|
void |
configureFromArguments()
This allows a custom op to configure relevant fields from its arguments.
|
List<SDVariable> |
doDiff(List<SDVariable> grad)
The actual implementation for automatic differentiation.
|
String |
onnxName()
The opName of this function in onnx
|
String |
opName()
This method returns op opName as string
|
void |
setPropertiesForFunction(Map<String,Object> properties) |
String |
tensorflowName()
The opName of this function tensorflow
|
addBArgument, addDArgument, addIArgument, addIArgument, addInputArgument, addOutputArgument, addSArgument, addTArgument, assertValidForExecution, bArgs, builder, calculateOutputShape, calculateOutputShape, clearArrays, computeArrays, dArgs, generateFake, generateFake, getBArgument, getDescriptor, getIArgument, getInputArgument, getOutputArgument, getSArgument, getTArgument, getValue, iArgs, initFromOnnx, initFromTensorFlow, inputArguments, mappingsForFunction, numBArguments, numDArguments, numIArguments, numInputArguments, numOutputArguments, numSArguments, numTArguments, opHash, opNum, opType, outputArguments, outputVariables, outputVariables, propertiesForFunction, removeIArgument, removeInputArgument, removeOutputArgument, removeSArgument, removeTArgument, sArgs, setInputArgument, setInputArguments, setOutputArgument, setValueFor, tArgs, toString, wrapFilterNull, wrapOrNull, wrapOrNullarg, arg, argNames, args, attributeAdaptersForFunction, configFieldName, configureWithSameDiff, diff, dup, equals, getBooleanFromProperty, getDoubleValueFromProperty, getIntValueFromProperty, getLongValueFromProperty, getNumOutputs, getStringFromProperty, hashCode, isConfigProperties, larg, onnxNames, outputs, outputVariable, outputVariablesNames, rarg, replaceArg, setInstanceId, tensorflowNamesclone, finalize, getClass, notify, notifyAll, wait, wait, waitisInplaceCallpublic Slice()
public Slice(SameDiff sameDiff, @NonNull @NonNull SDVariable input, @NonNull @NonNull int[] begin, @NonNull @NonNull int[] size)
public Slice(SameDiff sameDiff, @NonNull @NonNull SDVariable input, @NonNull @NonNull SDVariable begin, @NonNull @NonNull SDVariable end)
public Slice(INDArray input, int[] begin, int... size)
public String opName()
DynamicCustomOpopName in interface CustomOpopName in class DynamicCustomOppublic String onnxName()
DifferentialFunctiononnxName in class DynamicCustomOppublic String tensorflowName()
DifferentialFunctiontensorflowName in class DynamicCustomOppublic void configureFromArguments()
CustomOpconfigureFromArguments in interface CustomOpconfigureFromArguments in class DynamicCustomOppublic void setPropertiesForFunction(Map<String,Object> properties)
setPropertiesForFunction in class DynamicCustomOppublic List<SDVariable> doDiff(List<SDVariable> grad)
DifferentialFunctiondoDiff in class DynamicCustomOppublic List<DataType> calculateOutputDataTypes(List<DataType> dataTypes)
DifferentialFunctionDifferentialFunction.calculateOutputShape(), this method differs in that it does not
require the input arrays to be populated.
This is important as it allows us to do greedy datatype inference for the entire net - even if arrays are not
available.calculateOutputDataTypes in class DifferentialFunctiondataTypes - The data types of the inputsCopyright © 2022. All rights reserved.