public class Stack extends DynamicCustomOp
DynamicCustomOp.DynamicCustomOpsBuilder| Modifier and Type | Field and Description |
|---|---|
protected int |
jaxis |
axis, bArguments, dArguments, iArguments, inplaceCall, inputArguments, outputArguments, outputVariables, sArguments, tArgumentsdimensions, extraArgs, inPlace, ownName, ownNameSetWithDefault, sameDiff, scalarValue| Constructor and Description |
|---|
Stack() |
Stack(INDArray[] inputs,
INDArray output,
int axis) |
Stack(INDArray[] input,
int axis) |
Stack(SameDiff sameDiff,
SDVariable[] values,
int axis) |
Stack(SameDiff sameDiff,
SDVariable values,
int axis) |
| Modifier and Type | Method and Description |
|---|---|
void |
addArgs() |
List<DataType> |
calculateOutputDataTypes(List<DataType> dataTypes)
Calculate the data types for the output arrays.
|
void |
configureFromArguments()
This allows a custom op to configure relevant fields from its arguments.
|
List<SDVariable> |
doDiff(List<SDVariable> f1)
The actual implementation for automatic differentiation.
|
void |
initFromOnnx(Onnx.NodeProto node,
SameDiff initWith,
Map<String,Onnx.AttributeProto> attributesForNode,
Onnx.GraphProto graph)
Iniitialize the function from the given
Onnx.NodeProto |
void |
initFromTensorFlow(NodeDef nodeDef,
SameDiff initWith,
Map<String,AttrValue> attributesForNode,
GraphDef graph)
Initialize the function from the given
NodeDef |
Map<String,Map<String,PropertyMapping>> |
mappingsForFunction()
Returns the mappings for a given function (
for tensorflow and onnx import mapping properties
of this function).
|
String |
onnxName()
The opName of this function in onnx
|
String |
opName()
This method returns op opName as string
|
void |
setPropertiesForFunction(Map<String,Object> properties) |
String |
tensorflowName()
The opName of this function tensorflow
|
String[] |
tensorflowNames()
The opName of this function tensorflow
|
String |
toString() |
addBArgument, addDArgument, addIArgument, addIArgument, addInputArgument, addOutputArgument, addSArgument, addTArgument, assertValidForExecution, bArgs, builder, calculateOutputShape, calculateOutputShape, clearArrays, computeArrays, dArgs, generateFake, generateFake, getBArgument, getDescriptor, getIArgument, getInputArgument, getOutputArgument, getSArgument, getTArgument, getValue, iArgs, inputArguments, numBArguments, numDArguments, numIArguments, numInputArguments, numOutputArguments, numSArguments, numTArguments, opHash, opNum, opType, outputArguments, outputVariables, outputVariables, propertiesForFunction, removeIArgument, removeInputArgument, removeOutputArgument, removeSArgument, removeTArgument, sArgs, setInputArgument, setInputArguments, setOutputArgument, setValueFor, tArgs, wrapFilterNull, wrapOrNull, wrapOrNullarg, arg, argNames, args, attributeAdaptersForFunction, configFieldName, configureWithSameDiff, diff, dup, equals, getBooleanFromProperty, getDoubleValueFromProperty, getIntValueFromProperty, getLongValueFromProperty, getNumOutputs, getStringFromProperty, hashCode, isConfigProperties, larg, onnxNames, outputs, outputVariable, outputVariablesNames, rarg, replaceArg, setInstanceIdclone, finalize, getClass, notify, notifyAll, wait, wait, waitisInplaceCallpublic Stack()
public Stack(INDArray[] input, int axis)
public Stack(SameDiff sameDiff, SDVariable values, int axis)
public Stack(SameDiff sameDiff, SDVariable[] values, int axis)
public void addArgs()
public String onnxName()
DifferentialFunctiononnxName in class DynamicCustomOppublic String tensorflowName()
DifferentialFunctiontensorflowName in class DynamicCustomOppublic String toString()
toString in class DynamicCustomOppublic String[] tensorflowNames()
DifferentialFunctiontensorflowNames in class DifferentialFunctionpublic String opName()
DynamicCustomOpopName in interface CustomOpopName in class DynamicCustomOppublic void initFromTensorFlow(NodeDef nodeDef, SameDiff initWith, Map<String,AttrValue> attributesForNode, GraphDef graph)
DifferentialFunctionNodeDefinitFromTensorFlow in class DynamicCustomOppublic void initFromOnnx(Onnx.NodeProto node, SameDiff initWith, Map<String,Onnx.AttributeProto> attributesForNode, Onnx.GraphProto graph)
DifferentialFunctionOnnx.NodeProtoinitFromOnnx in class DynamicCustomOppublic Map<String,Map<String,PropertyMapping>> mappingsForFunction()
DifferentialFunctionmappingsForFunction in class DynamicCustomOppublic List<SDVariable> doDiff(List<SDVariable> f1)
DifferentialFunctiondoDiff in class DynamicCustomOppublic void configureFromArguments()
CustomOpconfigureFromArguments in interface CustomOpconfigureFromArguments in class DynamicCustomOppublic void setPropertiesForFunction(Map<String,Object> properties)
setPropertiesForFunction in class DynamicCustomOppublic List<DataType> calculateOutputDataTypes(List<DataType> dataTypes)
DifferentialFunctionDifferentialFunction.calculateOutputShape(), this method differs in that it does not
require the input arrays to be populated.
This is important as it allows us to do greedy datatype inference for the entire net - even if arrays are not
available.calculateOutputDataTypes in class DifferentialFunctiondataTypes - The data types of the inputsCopyright © 2022. All rights reserved.