public class Transpose extends DynamicCustomOp
DynamicCustomOp.DynamicCustomOpsBuilder| Modifier and Type | Field and Description |
|---|---|
protected int[] |
permuteDims |
axis, bArguments, dArguments, iArguments, inplaceCall, inputArguments, outputArguments, outputVariables, sArguments, tArgumentsdimensions, extraArgs, inPlace, ownName, ownNameSetWithDefault, sameDiff, scalarValue| Modifier | Constructor and Description |
|---|---|
|
Transpose() |
|
Transpose(INDArray input) |
|
Transpose(INDArray input,
INDArray result) |
|
Transpose(SameDiff sameDiff,
SDVariable i_v) |
|
Transpose(SameDiff sameDiff,
SDVariable in,
int[] permuteDims) |
protected |
Transpose(SameDiff sameDiff,
SDVariable in,
SDVariable permuteDims) |
| Modifier and Type | Method and Description |
|---|---|
List<DataType> |
calculateOutputDataTypes(List<DataType> dataTypes)
Calculate the data types for the output arrays.
|
List<SDVariable> |
doDiff(List<SDVariable> i_v)
The actual implementation for automatic differentiation.
|
void |
initFromOnnx(Onnx.NodeProto node,
SameDiff initWith,
Map<String,Onnx.AttributeProto> attributesForNode,
Onnx.GraphProto graph)
Iniitialize the function from the given
Onnx.NodeProto |
void |
initFromTensorFlow(NodeDef nodeDef,
SameDiff initWith,
Map<String,AttrValue> attributesForNode,
GraphDef graph)
Initialize the function from the given
NodeDef |
Map<String,Map<String,PropertyMapping>> |
mappingsForFunction()
Returns the mappings for a given function (
for tensorflow and onnx import mapping properties
of this function).
|
String |
onnxName()
The opName of this function in onnx
|
String |
opName()
This method returns op opName as string
|
String |
tensorflowName()
The opName of this function tensorflow
|
addBArgument, addDArgument, addIArgument, addIArgument, addInputArgument, addOutputArgument, addSArgument, addTArgument, assertValidForExecution, bArgs, builder, calculateOutputShape, calculateOutputShape, clearArrays, computeArrays, configureFromArguments, dArgs, generateFake, generateFake, getBArgument, getDescriptor, getIArgument, getInputArgument, getOutputArgument, getSArgument, getTArgument, getValue, iArgs, inputArguments, numBArguments, numDArguments, numIArguments, numInputArguments, numOutputArguments, numSArguments, numTArguments, opHash, opNum, opType, outputArguments, outputVariables, outputVariables, propertiesForFunction, removeIArgument, removeInputArgument, removeOutputArgument, removeSArgument, removeTArgument, sArgs, setInputArgument, setInputArguments, setOutputArgument, setPropertiesForFunction, setValueFor, tArgs, toString, wrapFilterNull, wrapOrNull, wrapOrNullarg, arg, argNames, args, attributeAdaptersForFunction, configFieldName, configureWithSameDiff, diff, dup, equals, getBooleanFromProperty, getDoubleValueFromProperty, getIntValueFromProperty, getLongValueFromProperty, getNumOutputs, getStringFromProperty, hashCode, isConfigProperties, larg, onnxNames, outputs, outputVariable, outputVariablesNames, rarg, replaceArg, setInstanceId, tensorflowNamesclone, finalize, getClass, notify, notifyAll, wait, wait, waitisInplaceCallpublic Transpose(SameDiff sameDiff, SDVariable i_v)
public Transpose(SameDiff sameDiff, SDVariable in, int[] permuteDims)
protected Transpose(SameDiff sameDiff, SDVariable in, SDVariable permuteDims)
public Transpose(INDArray input)
public Transpose()
public Map<String,Map<String,PropertyMapping>> mappingsForFunction()
DifferentialFunctionmappingsForFunction in class DynamicCustomOppublic String opName()
DynamicCustomOpopName in interface CustomOpopName in class DynamicCustomOppublic String onnxName()
DifferentialFunctiononnxName in class DynamicCustomOppublic String tensorflowName()
DifferentialFunctiontensorflowName in class DynamicCustomOppublic void initFromTensorFlow(NodeDef nodeDef, SameDiff initWith, Map<String,AttrValue> attributesForNode, GraphDef graph)
DifferentialFunctionNodeDefinitFromTensorFlow in class DynamicCustomOppublic void initFromOnnx(Onnx.NodeProto node, SameDiff initWith, Map<String,Onnx.AttributeProto> attributesForNode, Onnx.GraphProto graph)
DifferentialFunctionOnnx.NodeProtoinitFromOnnx in class DynamicCustomOppublic List<SDVariable> doDiff(List<SDVariable> i_v)
DifferentialFunctiondoDiff in class DynamicCustomOppublic List<DataType> calculateOutputDataTypes(List<DataType> dataTypes)
DifferentialFunctionDifferentialFunction.calculateOutputShape(), this method differs in that it does not
require the input arrays to be populated.
This is important as it allows us to do greedy datatype inference for the entire net - even if arrays are not
available.calculateOutputDataTypes in class DifferentialFunctiondataTypes - The data types of the inputsCopyright © 2022. All rights reserved.