public class DifferentialFunctionFactory extends Object
Constructor and Description |
---|
DifferentialFunctionFactory(SameDiff sameDiff) |
protected SameDiff sameDiff
public DifferentialFunctionFactory(SameDiff sameDiff)
sameDiff
- public SameDiff sameDiff()
public SDVariable invoke(String name, Object[] args)
public Constant val(SDVariable iX)
public ExternalErrorsFunction externalErrors(SDVariable... inputs)
public ExternalErrorsFunction externalErrors(Map<String,INDArray> externalGradients, SDVariable... inputs)
public SDVariable zerosLike(SDVariable input)
public SDVariable zerosLike(String name, SDVariable input)
public SDVariable onesLike(String name, SDVariable input, DataType dataType)
public SDVariable constant(SDVariable input, long... shape)
public SDVariable linspace(SDVariable lower, SDVariable upper, SDVariable count, DataType dt)
public SDVariable range(double from, double to, double step, DataType dataType)
public SDVariable range(SDVariable from, SDVariable to, SDVariable step, DataType dataType)
public SDVariable[] listdiff(SDVariable x, SDVariable y)
public SDVariable cast(SDVariable toCast, DataType toType)
public SDVariable[] meshgrid(boolean cartesian, SDVariable... inputs)
public SDVariable randomUniform(double min, double max, SDVariable shape)
public SDVariable randomUniform(double min, double max, long... shape)
public SDVariable randomNormal(double mean, double std, SDVariable shape)
public SDVariable randomNormal(double mean, double std, long... shape)
public SDVariable randomBernoulli(double p, SDVariable shape)
public SDVariable randomBernoulli(double p, long... shape)
public SDVariable randomBinomial(int nTrials, double p, long... shape)
public SDVariable randomLogNormal(double mean, double stdev, long... shape)
public SDVariable randomNormalTruncated(double mean, double stdev, long... shape)
public SDVariable randomExponential(double lambda, SDVariable shape)
lambda
- Must be > 0shape
- Shape of the outputpublic SDVariable pad(SDVariable input, SDVariable padding, Pad.Mode mode, double padValue)
public SDVariable localResponseNormalization(SDVariable input, LocalResponseNormalizationConfig lrnConfig)
input
- the inputs to lrnlrnConfig
- the configurationpublic SDVariable conv1d(SDVariable input, SDVariable weights, Conv1DConfig conv1DConfig)
input
- the inputs to conv1dweights
- conv1d weightsconv1DConfig
- the configurationpublic SDVariable conv1d(SDVariable input, SDVariable weights, SDVariable bias, Conv1DConfig conv1DConfig)
input
- the inputs to conv1dweights
- conv1d weightsbias
- conv1d biasconv1DConfig
- the configurationpublic SDVariable conv2d(SDVariable[] inputs, Conv2DConfig conv2DConfig)
inputs
- the inputs to conv2dconv2DConfig
- the configurationpublic SDVariable upsampling2d(SDVariable input, boolean nchw, int scaleH, int scaleW)
public SDVariable upsampling2dBp(SDVariable input, SDVariable gradient, boolean nchw, int scaleH, int scaleW)
public SDVariable avgPooling2d(SDVariable input, Pooling2DConfig pooling2DConfig)
input
- the inputs to poolingpooling2DConfig
- the configurationpublic SDVariable maxPooling2d(SDVariable input, Pooling2DConfig pooling2DConfig)
input
- the inputs to poolingpooling2DConfig
- the configurationpublic SDVariable avgPooling3d(SDVariable input, Pooling3DConfig pooling3DConfig)
input
- the inputs to poolingpooling3DConfig
- the configurationpublic SDVariable maxPooling3d(SDVariable input, Pooling3DConfig pooling3DConfig)
input
- the inputs to poolingpooling3DConfig
- the configurationpublic SDVariable sconv2d(SDVariable[] inputs, Conv2DConfig conv2DConfig)
inputs
- the inputs to conv2dconv2DConfig
- the configurationpublic SDVariable depthWiseConv2d(SDVariable[] inputs, Conv2DConfig depthConv2DConfig)
inputs
- the inputs to conv2ddepthConv2DConfig
- the configurationpublic SDVariable deconv2d(SDVariable[] inputs, DeConv2DConfig deconv2DConfig)
inputs
- the inputs to conv2ddeconv2DConfig
- the configurationpublic SDVariable deconv3d(SDVariable input, SDVariable weights, SDVariable bias, DeConv3DConfig config)
public SDVariable[] deconv3dDerivative(SDVariable input, SDVariable weights, SDVariable bias, SDVariable grad, DeConv3DConfig config)
public SDVariable conv3d(SDVariable[] inputs, Conv3DConfig conv3DConfig)
inputs
- the inputs to conv3dconv3DConfig
- the configurationpublic SDVariable batchNorm(SDVariable input, SDVariable mean, SDVariable variance, SDVariable gamma, SDVariable beta, boolean applyGamma, boolean applyBeta, double epsilon, int... axis)
public SDVariable im2Col(SDVariable input, Conv2DConfig config)
public SDVariable im2ColBp(SDVariable im2colInput, SDVariable gradientAtOutput, Conv2DConfig config)
public SDVariable col2Im(SDVariable input, Conv2DConfig config)
public SDVariable extractImagePatches(SDVariable input, int kH, int kW, int sH, int sW, int rH, int rW, boolean sameMode)
public SDVariable[] moments(SDVariable input, int... axes)
public SDVariable[] normalizeMoments(SDVariable counts, SDVariable means, SDVariable variances, double shift)
public SDVariable tile(@NonNull SDVariable iX, @NonNull int[] repeat)
public SDVariable tileBp(@NonNull SDVariable in, @NonNull SDVariable grad, @NonNull int[] repeat)
public SDVariable tile(@NonNull SDVariable iX, @NonNull SDVariable repeat)
public SDVariable tileBp(@NonNull SDVariable in, @NonNull SDVariable repeat, @NonNull SDVariable grad)
public SDVariable dropout(SDVariable input, double p)
public SDVariable sum(SDVariable i_x, boolean keepDims, int... dimensions)
public SDVariable sumBp(SDVariable i_x, SDVariable grad, boolean keepDims, int... dimensions)
public SDVariable prod(SDVariable i_x, boolean keepDims, int... dimensions)
public SDVariable prodBp(SDVariable preReduceInput, SDVariable grad, boolean keepDims, int... dimensions)
public SDVariable mean(SDVariable in, boolean keepDims, int... dimensions)
public SDVariable meanBp(SDVariable in, SDVariable grad, boolean keepDims, int... dimensions)
public SDVariable std(SDVariable i_x, boolean biasCorrected, boolean keepDims, int... dimensions)
public SDVariable stdBp(SDVariable stdInput, SDVariable gradient, boolean biasCorrected, boolean keepDims, int... dimensions)
public SDVariable variance(SDVariable i_x, boolean biasCorrected, boolean keepDims, int... dimensions)
public SDVariable varianceBp(SDVariable stdInput, SDVariable gradient, boolean biasCorrected, boolean keepDims, int... dimensions)
public SDVariable standardize(SDVariable i_x, int... dimensions)
public SDVariable standardizeBp(SDVariable stdInput, SDVariable gradient, int... dimensions)
public SDVariable layerNorm(SDVariable input, SDVariable gain, SDVariable bias, boolean channelsFirst, int... dimensions)
public SDVariable[] layerNormBp(SDVariable input, SDVariable gain, SDVariable bias, SDVariable gradient, boolean channelsFirst, int... dimensions)
public SDVariable layerNorm(SDVariable input, SDVariable gain, boolean channelsFirst, int... dimensions)
public SDVariable[] layerNormBp(SDVariable input, SDVariable gain, SDVariable gradient, boolean channelsFirst, int... dimensions)
public SDVariable squaredNorm(SDVariable input, boolean keepDims, int... dimensions)
public SDVariable squaredNormBp(SDVariable preReduceInput, SDVariable gradient, boolean keepDims, int... dimensions)
public SDVariable entropy(SDVariable in, int... dimensions)
public SDVariable logEntropy(SDVariable in, int... dimensions)
public SDVariable shannonEntropy(SDVariable in, int... dimensions)
public SDVariable countNonZero(SDVariable input, int... dimensions)
public SDVariable countZero(SDVariable input, int... dimensions)
public SDVariable zeroFraction(SDVariable input)
public SDVariable scalarMax(SDVariable in, Number num)
public SDVariable scalarMin(SDVariable in, Number num)
public SDVariable scalarSet(SDVariable in, Number num)
public SDVariable scalarFloorMod(SDVariable in, Number num)
public SDVariable max(SDVariable i_x, boolean keepDims, int... dimensions)
public SDVariable max(SDVariable first, SDVariable second)
public SDVariable maxBp(SDVariable i_x, SDVariable grad, boolean keepDims, int... dimensions)
public SDVariable min(SDVariable i_x, boolean keepDims, int... dimensions)
public SDVariable minBp(SDVariable i_x, SDVariable grad, boolean keepDims, int... dimensions)
public SDVariable min(SDVariable first, SDVariable second)
public SDVariable amax(SDVariable in, int... dimensions)
public SDVariable amin(SDVariable in, int... dimensions)
public SDVariable amean(SDVariable in, int... dimensions)
public SDVariable asum(SDVariable in, int... dimensions)
public SDVariable argmax(SDVariable in, boolean keepDims, int... dimensions)
public SDVariable argmin(SDVariable in, boolean keepDims, int... dimensions)
public SDVariable iamax(SDVariable in, boolean keepDims, int... dimensions)
public SDVariable iamin(SDVariable in, boolean keepDims, int... dimensions)
public SDVariable firstIndex(SDVariable in, Condition condition, boolean keepDims, int... dimensions)
public SDVariable lastIndex(SDVariable in, Condition condition, boolean keepDims, int... dimensions)
public SDVariable matchConditionCount(SDVariable in, Condition condition, boolean keepDims, int... dimensions)
in
- Inputcondition
- Conditionpublic SDVariable matchCondition(SDVariable in, Condition condition)
in
- Inputcondition
- Conditionpublic SDVariable cumsum(SDVariable in, boolean exclusive, boolean reverse, int... axis)
public SDVariable cumsumBp(SDVariable in, SDVariable grad, boolean exclusive, boolean reverse, int... axis)
public SDVariable cumprod(SDVariable in, boolean exclusive, boolean reverse, int... axis)
public SDVariable cumprodBp(SDVariable in, SDVariable grad, boolean exclusive, boolean reverse, int... axis)
public SDVariable biasAdd(SDVariable input, SDVariable bias)
public SDVariable[] biasAddBp(SDVariable input, SDVariable bias, SDVariable grad)
public SDVariable norm1(SDVariable i_x, boolean keepDims, int... dimensions)
public SDVariable norm1Bp(SDVariable preReduceIn, SDVariable grad, boolean keepDims, int... dimensions)
public SDVariable norm2(SDVariable i_x, boolean keepDims, int... dimensions)
public SDVariable norm2Bp(SDVariable preReduceIn, SDVariable grad, boolean keepDims, int... dimensions)
public SDVariable normmax(SDVariable i_x, boolean keepDims, int... dimensions)
public SDVariable normmaxBp(SDVariable preReduceIn, SDVariable grad, boolean keepDims, int... dimensions)
public SDVariable reductionShape(SDVariable shape, SDVariable axis, boolean keepDim)
public SDVariable reductionBroadcastableWithOrigShape(int origRank, int[] reduceDims, SDVariable toExpand)
Example: if doing [a,b,c].sum(1), result is [a,c]. To 'undo' this in a way that can be auto-broadcast, we want to expand as required - i.e., [a,c] -> [a,1,c] which can be auto-broadcast with the original [a,b,c]. This is typically only used with reduction operations backprop.
origRank
- Rank of the original array, before the reduction was executedreduceDims
- Dimensions that the original array was reduced fromtoExpand
- Array to add 1s to the shape to (such that it can bepublic SDVariable reductionBroadcastableWithOrigShape(SDVariable origInput, SDVariable axis, SDVariable toExpand)
public SDVariable gradientBackwardsMarker(SDVariable iX)
public SDVariable abs(SDVariable iX)
public SDVariable neg(SDVariable iX)
public SDVariable cos(SDVariable iX)
public SDVariable sin(SDVariable iX)
public SDVariable tan(SDVariable iX)
public SDVariable permute(SDVariable iX, int... dimensions)
public SDVariable permute(SDVariable in, SDVariable dimensions)
public SDVariable noop(SDVariable input)
public SDVariable identity(SDVariable input)
public SDVariable all(SDVariable input, int... dimensions)
public SDVariable any(SDVariable input, int... dimensions)
public SDVariable invertPermutation(SDVariable input, boolean inPlace)
public SDVariable transpose(SDVariable iX)
public SDVariable acos(SDVariable iX)
public SDVariable asin(SDVariable iX)
public SDVariable atan(SDVariable iX)
public SDVariable atan2(SDVariable y, SDVariable x)
public SDVariable cosh(SDVariable iX)
public SDVariable sinh(SDVariable iX)
public SDVariable tanh(SDVariable iX)
public SDVariable tanhRational(SDVariable in)
public SDVariable tanhRectified(SDVariable in)
public SDVariable tanhDerivative(SDVariable iX, SDVariable wrt)
public SDVariable tanhRationalBp(SDVariable in, SDVariable epsilon)
public SDVariable tanhRectifiedBp(SDVariable in, SDVariable epsilon)
@Deprecated public SDVariable tanhRationalDerivative(SDVariable in)
@Deprecated public SDVariable tanhRectifiedDerivative(SDVariable in)
public SDVariable step(SDVariable in, double cutoff)
public SDVariable acosh(SDVariable iX)
public SDVariable asinh(SDVariable iX)
public SDVariable atanh(SDVariable iX)
public SDVariable exp(SDVariable iX)
public SDVariable expm1(SDVariable iX)
public SDVariable rsqrt(SDVariable iX)
public SDVariable log(SDVariable iX)
public SDVariable log(SDVariable in, double base)
public SDVariable log1p(SDVariable iX)
public SDVariable isFinite(SDVariable ix)
public SDVariable isInfinite(SDVariable ix)
public SDVariable isNaN(SDVariable ix)
public SDVariable isMax(SDVariable ix)
public SDVariable replaceWhere(SDVariable to, SDVariable from, Condition condition)
public SDVariable replaceWhere(SDVariable to, Number set, Condition condition)
public SDVariable round(SDVariable ix)
public SDVariable or(SDVariable iX, SDVariable i_y)
public SDVariable and(SDVariable ix, SDVariable iy)
public SDVariable xor(SDVariable ix, SDVariable iy)
public SDVariable shift(SDVariable ix, SDVariable shift)
public SDVariable rshift(SDVariable ix, SDVariable shift)
public SDVariable rotl(SDVariable ix, SDVariable shift)
public SDVariable rotr(SDVariable ix, SDVariable shift)
public SDVariable bitwiseHammingDist(SDVariable x, SDVariable y)
public SDVariable bitwiseAnd(SDVariable x, SDVariable y)
public SDVariable bitwiseOr(SDVariable x, SDVariable y)
public SDVariable bitwiseXor(SDVariable x, SDVariable y)
public SDVariable eq(SDVariable iX, SDVariable i_y)
public SDVariable neq(SDVariable iX, double i_y)
public SDVariable neqi(SDVariable iX, double i_y)
public SDVariable neqi(SDVariable iX, SDVariable i_y)
public SDVariable neq(SDVariable iX, SDVariable i_y)
public SDVariable pow(SDVariable iX, double i_y)
public SDVariable pow(SDVariable x, SDVariable y)
public SDVariable sqrt(SDVariable iX)
public SDVariable square(SDVariable iX)
public SDVariable cube(SDVariable iX)
public SDVariable cubeBp(SDVariable in, SDVariable epsilon)
@Deprecated public SDVariable cubeDerivative(SDVariable iX)
cubeBp(SDVariable, SDVariable)
public SDVariable floor(SDVariable iX)
public SDVariable floorDiv(SDVariable x, SDVariable y)
public List<SDVariable> floorDivBp(SDVariable x, SDVariable y, SDVariable grad)
public SDVariable floorMod(SDVariable x, SDVariable y)
public List<SDVariable> floorModBp(SDVariable x, SDVariable y, SDVariable grad)
public SDVariable ceil(SDVariable x)
public SDVariable clipByValue(SDVariable x, double clipValueMin, double clipValueMax)
public SDVariable clipByNorm(SDVariable x, double clipValue)
public SDVariable clipByNorm(SDVariable x, double clipValue, int... dimensions)
public SDVariable relu(SDVariable iX, double cutoff)
public SDVariable reluDerivative(SDVariable input, SDVariable grad)
public SDVariable thresholdRelu(SDVariable in, SDVariable epsilon, double cutoff)
public SDVariable thresholdReluBp(SDVariable in, SDVariable epsilon, double cutoff)
public SDVariable relu6(SDVariable iX, double cutoff)
public SDVariable relu6Derivative(SDVariable iX, SDVariable wrt, double cutoff)
public SDVariable softmax(SDVariable iX)
public SDVariable softmax(SDVariable iX, int dimension)
public SDVariable hardTanh(SDVariable iX)
public SDVariable hardTanhBp(SDVariable in, SDVariable epsilon)
@Deprecated public SDVariable hardTanhDerivative(SDVariable iX)
hardTanhBp(SDVariable, SDVariable)
public SDVariable hardSigmoid(SDVariable in)
public SDVariable hardSigmoidBp(SDVariable in, SDVariable epsilon)
public SDVariable sigmoid(SDVariable iX)
public SDVariable sigmoidDerivative(SDVariable iX, SDVariable wrt)
public SDVariable logSigmoid(SDVariable iX)
public SDVariable powDerivative(SDVariable iX, double pow)
public SDVariable swish(SDVariable iX)
public SDVariable swishDerivative(SDVariable iX)
public SDVariable gelu(SDVariable iX, boolean precise)
public SDVariable geluDerivative(SDVariable iX, boolean precise)
public SDVariable sign(SDVariable iX)
public SDVariable expandDims(SDVariable iX, int axis)
public SDVariable squeeze(SDVariable iX, int... axis)
public SDVariable confusionMatrix(SDVariable labels, SDVariable pred, DataType dataType)
public SDVariable confusionMatrix(SDVariable labels, SDVariable pred, Integer numClasses)
public SDVariable confusionMatrix(SDVariable labels, SDVariable pred, SDVariable weights)
public SDVariable confusionMatrix(SDVariable labels, SDVariable pred, Integer numClasses, SDVariable weights)
public SDVariable matrixDeterminant(SDVariable in)
public SDVariable matrixInverse(SDVariable in)
public SDVariable onehot(SDVariable indices, int depth, int axis, double on, double off, DataType dataType)
public SDVariable onehot(SDVariable indices, int depth)
public SDVariable reciprocal(SDVariable a)
public SDVariable repeat(SDVariable iX, int axis)
public SDVariable stack(SDVariable[] values, int axis)
public SDVariable parallel_stack(SDVariable[] values)
public SDVariable[] unstack(SDVariable value, int axis)
public SDVariable[] unstack(SDVariable value, int axis, int num)
public SDVariable assign(SDVariable x, SDVariable y)
public SDVariable assign(SDVariable x, Number num)
public SDVariable softsign(SDVariable iX)
public SDVariable softsignBp(SDVariable in, SDVariable epsilon)
@Deprecated public SDVariable softsignDerivative(SDVariable iX)
softsignBp(SDVariable, SDVariable)
public SDVariable softplus(SDVariable iX)
public SDVariable elu(SDVariable iX)
public SDVariable eluBp(SDVariable in, SDVariable epsilon, double alpha)
public SDVariable leakyRelu(SDVariable iX, double alpha)
public SDVariable leakyReluBp(SDVariable in, SDVariable epsilon, double cutoff)
@Deprecated public SDVariable leakyReluDerivative(SDVariable iX, double cutoff)
leakyReluBp(SDVariable, SDVariable, double)
public SDVariable reshape(SDVariable iX, int[] shape)
public SDVariable reshape(SDVariable iX, long[] shape)
public SDVariable reshape(SDVariable iX, SDVariable shape)
public SDVariable reverse(SDVariable x, int... dimensions)
public SDVariable reverseSequence(SDVariable x, SDVariable seq_lengths, int seq_dim, int batch_dim)
public SDVariable reverseSequence(SDVariable x, SDVariable seq_lengths)
public SDVariable sequenceMask(SDVariable lengths, SDVariable maxLen, DataType dataType)
public SDVariable sequenceMask(SDVariable lengths, int maxLen, DataType dataType)
public SDVariable sequenceMask(SDVariable lengths, DataType dataType)
public SDVariable concat(int dimension, SDVariable... inputs)
public SDVariable fill(SDVariable shape, DataType dataType, double value)
public SDVariable dot(SDVariable x, SDVariable y, int... dimensions)
public SDVariable[] dotBp(SDVariable in1, SDVariable in2, SDVariable grad, boolean keepDims, int... dimensions)
public SDVariable cosineSimilarity(SDVariable iX, SDVariable i_y, int... dimensions)
public SDVariable cosineDistance(SDVariable ix, SDVariable iy, int... dimensions)
public SDVariable euclideanDistance(SDVariable iX, SDVariable i_y, int... dimensions)
public SDVariable manhattanDistance(SDVariable iX, SDVariable i_y, int... dimensions)
public SDVariable hammingDistance(SDVariable ix, SDVariable iy, int... dimensions)
public SDVariable jaccardDistance(SDVariable ix, SDVariable iy, int... dimensions)
public SDVariable weightedCrossEntropyWithLogits(SDVariable targets, SDVariable inputs, SDVariable weights)
public SDVariable lossL2(SDVariable var)
public SDVariable lossAbsoluteDifference(SDVariable label, SDVariable predictions, SDVariable weights, LossReduce lossReduce)
public SDVariable[] lossAbsoluteDifferenceBP(SDVariable label, SDVariable predictions, SDVariable weights, LossReduce lossReduce)
public SDVariable lossCosineDistance(SDVariable label, SDVariable predictions, SDVariable weights, LossReduce lossReduce, int dimension)
public SDVariable[] lossCosineDistanceBp(SDVariable label, SDVariable predictions, SDVariable weights, LossReduce lossReduce, int dimension)
public SDVariable lossHinge(SDVariable label, SDVariable predictions, SDVariable weights, LossReduce lossReduce)
public SDVariable[] lossHingeBp(SDVariable label, SDVariable predictions, SDVariable weights, LossReduce lossReduce)
public SDVariable lossHuber(SDVariable label, SDVariable predictions, SDVariable weights, LossReduce lossReduce, double delta)
public SDVariable[] lossHuberBp(SDVariable label, SDVariable predictions, SDVariable weights, LossReduce lossReduce, double delta)
public SDVariable lossLog(SDVariable label, SDVariable predictions, SDVariable weights, LossReduce lossReduce, double epsilon)
public SDVariable[] lossLogBp(SDVariable label, SDVariable predictions, SDVariable weights, LossReduce lossReduce, double epsilon)
public SDVariable lossLogPoisson(SDVariable label, SDVariable predictions, SDVariable weights, LossReduce lossReduce)
public SDVariable[] lossLogPoissonBp(SDVariable label, SDVariable predictions, SDVariable weights, LossReduce lossReduce)
public SDVariable lossLogPoissonFull(SDVariable label, SDVariable predictions, SDVariable weights, LossReduce lossReduce)
public SDVariable[] lossLogPoissonFullBp(SDVariable label, SDVariable predictions, SDVariable weights, LossReduce lossReduce)
public SDVariable lossMeanPairwiseSquaredError(SDVariable label, SDVariable predictions, SDVariable weights, LossReduce lossReduce)
public SDVariable[] lossMeanPairwiseSquaredErrorBp(SDVariable label, SDVariable predictions, SDVariable weights, LossReduce lossReduce)
public SDVariable lossMeanSquaredError(SDVariable label, SDVariable predictions, SDVariable weights, LossReduce lossReduce)
public SDVariable[] lossMeanSquaredErrorBp(SDVariable label, SDVariable predictions, SDVariable weights, LossReduce lossReduce)
public SDVariable lossSigmoidCrossEntropy(SDVariable labels, SDVariable logits, SDVariable weights, LossReduce lossReduce, double labelSmoothing)
public SDVariable[] lossSigmoidCrossEntropyBp(SDVariable labels, SDVariable logits, SDVariable weights, LossReduce lossReduce, double labelSmoothing)
public SDVariable lossSoftmaxCrossEntropy(SDVariable labels, SDVariable logits, SDVariable weights, LossReduce lossReduce, double labelSmoothing)
public SDVariable[] lossSoftmaxCrossEntropyBp(SDVariable labels, SDVariable logits, SDVariable weights, LossReduce lossReduce, double labelSmoothing)
public SDVariable lossSoftmaxCrossEntropyWithLogits(SDVariable labels, SDVariable logits, SDVariable weights, int classDim)
public SDVariable[] lossSoftmaxCrossEntropyWithLogitsBp(SDVariable labels, SDVariable logits, SDVariable weights, int classDim)
public SDVariable lossSparseSoftmaxCrossEntropy(SDVariable logits, SDVariable labels)
public SDVariable[] lossSparseSoftmaxCrossEntropyBp(SDVariable logits, SDVariable labels)
public SDVariable xwPlusB(SDVariable input, SDVariable weights, SDVariable bias)
public SDVariable reluLayer(SDVariable input, SDVariable weights, SDVariable bias)
public SDVariable mmul(SDVariable x, SDVariable y, MMulTranspose mMulTranspose)
public SDVariable mmul(SDVariable x, SDVariable y)
public List<SDVariable> mmulBp(SDVariable x, SDVariable y, SDVariable eps, MMulTranspose mt)
public SDVariable[] batchMmul(SDVariable[] matricesA, SDVariable[] matricesB)
public SDVariable[] batchMmul(SDVariable[] matricesA, SDVariable[] matricesB, boolean transposeA, boolean transposeB)
public SDVariable[] batchMmul(SDVariable[] matrices, boolean transposeA, boolean transposeB)
public SDVariable tensorMmul(SDVariable x, SDVariable y, int[][] dimensions)
public SDVariable dotProductAttention(SDVariable queries, SDVariable keys, SDVariable values, SDVariable mask, boolean scaled)
public List<SDVariable> dotProductAttention(SDVariable queries, SDVariable keys, SDVariable values, SDVariable mask, boolean scaled, boolean withWeights)
public List<SDVariable> dotProductAttentionBp(SDVariable queries, SDVariable keys, SDVariable values, SDVariable gradient, SDVariable mask, boolean scaled)
public SDVariable multiHeadDotProductAttention(SDVariable queries, SDVariable keys, SDVariable values, SDVariable Wq, SDVariable Wk, SDVariable Wv, SDVariable Wo, SDVariable mask, boolean scaled)
public List<SDVariable> multiHeadDotProductAttention(SDVariable queries, SDVariable keys, SDVariable values, SDVariable Wq, SDVariable Wk, SDVariable Wv, SDVariable Wo, SDVariable mask, boolean scaled, boolean withWeights)
public List<SDVariable> multiHeadDotProductAttentionBp(SDVariable queries, SDVariable keys, SDVariable values, SDVariable Wq, SDVariable Wk, SDVariable Wv, SDVariable Wo, SDVariable gradient, SDVariable mask, boolean scaled)
public SDVariable softmaxDerivative(SDVariable functionInput, SDVariable wrt, Integer dimension)
public SDVariable logSoftmax(SDVariable i_v)
public SDVariable logSoftmax(SDVariable i_v, int dimension)
public SDVariable logSoftmaxDerivative(SDVariable arg, SDVariable wrt)
public SDVariable logSoftmaxDerivative(SDVariable arg, SDVariable wrt, int dimension)
public SDVariable logSumExp(SDVariable arg, boolean keepDims, int... dimension)
public SDVariable selu(SDVariable arg)
public SDVariable seluBp(SDVariable in, SDVariable epsilon)
@Deprecated public SDVariable seluDerivative(SDVariable arg)
seluBp(SDVariable, SDVariable)
public SDVariable rsub(SDVariable differentialFunction, SDVariable i_v)
public List<SDVariable> rsubBp(SDVariable x, SDVariable y, SDVariable grad)
public SDVariable rdiv(SDVariable differentialFunction, SDVariable i_v)
public List<SDVariable> rdivBp(SDVariable x, SDVariable y, SDVariable grad)
public SDVariable rdivi(SDVariable differentialFunction, SDVariable i_v)
public SDVariable rsubi(SDVariable differentialFunction, SDVariable i_v)
public SDVariable add(SDVariable differentialFunction, SDVariable i_v)
public SDVariable mergeAdd(SDVariable... differentialFunctions)
public SDVariable mergeMax(SDVariable... differentialFunctions)
public SDVariable mergeAvg(SDVariable... differentialFunctions)
public SDVariable diag(SDVariable sdVariable)
public SDVariable diagPart(SDVariable sdVariable)
public SDVariable setDiag(SDVariable in, SDVariable diag)
public SDVariable batchToSpace(SDVariable differentialFunction, int[] blocks, int[][] crops)
public SDVariable spaceToBatch(SDVariable differentialFunction, int[] blocks, int[][] padding)
public SDVariable depthToSpace(SDVariable differentialFunction, int blocksSize, String dataFormat)
public SDVariable spaceToDepth(SDVariable differentialFunction, int blocksSize, String dataFormat)
public SDVariable[] dynamicPartition(SDVariable differentialFunction, SDVariable partitions, int numPartitions)
public SDVariable[] dynamicPartitionBp(SDVariable input, SDVariable partitions, SDVariable[] grads, int numPartitions)
public SDVariable dynamicStitch(SDVariable[] indices, SDVariable[] differentialFunctions)
public SDVariable segmentMax(SDVariable data, SDVariable segmentIds)
public SDVariable[] segmentMaxBp(SDVariable data, SDVariable segmentIds, SDVariable gradient)
public SDVariable segmentMin(SDVariable data, SDVariable segmentIds)
public SDVariable[] segmentMinBp(SDVariable data, SDVariable segmentIds, SDVariable gradient)
public SDVariable segmentMean(SDVariable data, SDVariable segmentIds)
public SDVariable[] segmentMeanBp(SDVariable data, SDVariable segmentIds, SDVariable gradient)
public SDVariable segmentProd(SDVariable data, SDVariable segmentIds)
public SDVariable[] segmentProdBp(SDVariable data, SDVariable segmentIds, SDVariable gradient)
public SDVariable segmentSum(SDVariable data, SDVariable segmentIds)
public SDVariable[] segmentSumBp(SDVariable data, SDVariable segmentIds, SDVariable gradient)
public SDVariable unsortedSegmentMax(SDVariable data, SDVariable segmentIds, int numSegments)
public SDVariable[] unsortedSegmentMaxBp(SDVariable data, SDVariable segmentIds, SDVariable gradient, int numSegments)
public SDVariable unsortedSegmentMin(SDVariable data, SDVariable segmentIds, int numSegments)
public SDVariable[] unsortedSegmentMinBp(SDVariable data, SDVariable segmentIds, SDVariable gradient, int numSegments)
public SDVariable unsortedSegmentMean(SDVariable data, SDVariable segmentIds, int numSegments)
public SDVariable[] unsortedSegmentMeanBp(SDVariable data, SDVariable segmentIds, SDVariable gradient, int numSegments)
public SDVariable unsortedSegmentProd(SDVariable data, SDVariable segmentIds, int numSegments)
public SDVariable[] unsortedSegmentProdBp(SDVariable data, SDVariable segmentIds, SDVariable gradient, int numSegments)
public SDVariable unsortedSegmentSum(SDVariable data, SDVariable segmentIds, int numSegments)
public SDVariable[] unsortedSegmentSumBp(SDVariable data, SDVariable segmentIds, SDVariable gradient, int numSegments)
public SDVariable unsortedSegmentSqrtN(SDVariable data, SDVariable segmentIds, int numSegments)
public SDVariable[] unsortedSegmentSqrtNBp(SDVariable data, SDVariable segmentIds, SDVariable gradient, int numSegments)
public SDVariable dilation2D(SDVariable df, SDVariable weights, int[] strides, int[] rates, boolean isSameMode)
public SDVariable shape(SDVariable df)
public SDVariable size(SDVariable in)
public SDVariable sizeAt(SDVariable in, int dimension)
public SDVariable rank(SDVariable df)
public SDVariable gather(SDVariable df, int[] indices, int axis)
public SDVariable gather(SDVariable df, SDVariable indices, int axis)
public SDVariable gatherNd(SDVariable df, SDVariable indices)
public SDVariable trace(SDVariable in)
public SDVariable cross(SDVariable a, SDVariable b)
public SDVariable erf(SDVariable differentialFunction)
public SDVariable erfc(SDVariable differentialFunction)
public SDVariable addi(SDVariable differentialFunction, SDVariable i_v)
public List<SDVariable> addBp(SDVariable x, SDVariable y, SDVariable grad)
public SDVariable sub(SDVariable differentialFunction, SDVariable i_v)
public SDVariable squaredDifference(SDVariable differentialFunction, SDVariable i_v)
public List<SDVariable> subBp(SDVariable x, SDVariable y, SDVariable grad)
public SDVariable subi(SDVariable differentialFunction, SDVariable i_v)
public SDVariable mul(SDVariable differentialFunction, SDVariable i_v)
public List<SDVariable> mulBp(SDVariable x, SDVariable y, SDVariable grad)
public List<SDVariable> modBp(SDVariable x, SDVariable y, SDVariable grad)
public SDVariable muli(SDVariable differentialFunction, SDVariable i_v)
public SDVariable mod(SDVariable differentialFunction, SDVariable i_v)
public SDVariable div(SDVariable differentialFunction, SDVariable i_v)
public SDVariable truncatedDiv(SDVariable differentialFunction, SDVariable i_v)
public List<SDVariable> divBp(SDVariable x, SDVariable y, SDVariable grad)
public SDVariable divi(SDVariable differentialFunction, SDVariable i_v)
public SDVariable rsub(SDVariable differentialFunction, double i_v)
public SDVariable rdiv(SDVariable differentialFunction, double i_v)
public SDVariable rdivi(SDVariable differentialFunction, double i_v)
public SDVariable rsubi(SDVariable differentialFunction, double i_v)
public SDVariable add(SDVariable differentialFunction, double i_v)
public SDVariable addi(SDVariable differentialFunction, double i_v)
public SDVariable sub(SDVariable differentialFunction, double i_v)
public SDVariable subi(SDVariable differentialFunction, double i_v)
public SDVariable mul(SDVariable differentialFunction, double i_v)
public SDVariable muli(SDVariable differentialFunction, double i_v)
public SDVariable div(SDVariable differentialFunction, double i_v)
public SDVariable divi(SDVariable differentialFunction, double i_v)
public SDVariable gt(SDVariable functionInput, SDVariable functionInput1)
public SDVariable lt(SDVariable functionInput, SDVariable functionInput1)
public SDVariable gti(SDVariable functionInput, SDVariable functionInput1)
public SDVariable lti(SDVariable functionInput, SDVariable functionInput1)
public SDVariable gte(SDVariable functionInput, SDVariable functionInput1)
public SDVariable lte(SDVariable functionInput, SDVariable functionInput1)
public SDVariable gtei(SDVariable functionInput, SDVariable functionInput1)
public SDVariable ltOrEqi(SDVariable functionInput, SDVariable functionInput1)
public SDVariable gt(SDVariable functionInput, double functionInput1)
public SDVariable lt(SDVariable functionInput, double functionInput1)
public SDVariable gti(SDVariable functionInput, double functionInput1)
public SDVariable lti(SDVariable functionInput, double functionInput1)
public SDVariable gte(SDVariable functionInput, double functionInput1)
public SDVariable lte(SDVariable functionInput, double functionInput1)
public SDVariable gtei(SDVariable functionInput, double functionInput1)
public SDVariable ltei(SDVariable functionInput, double functionInput1)
public SDVariable eq(SDVariable iX, double i_y)
public SDVariable eqi(SDVariable iX, double i_y)
public SDVariable isNonDecreasing(SDVariable iX)
public SDVariable isStrictlyIncreasing(SDVariable iX)
public SDVariable isNumericTensor(SDVariable iX)
public SDVariable slice(SDVariable input, int[] begin, int[] size)
public SDVariable slice(SDVariable input, SDVariable begin, SDVariable size)
public SDVariable sliceBp(SDVariable input, SDVariable gradient, int[] begin, int[] size)
public SDVariable sliceBp(SDVariable input, SDVariable gradient, SDVariable begin, SDVariable size)
public SDVariable stridedSlice(SDVariable input, int[] begin, int[] end, int[] strides)
public SDVariable stridedSlice(SDVariable input, long[] begin, long[] end, long[] strides)
public SDVariable stridedSlice(SDVariable in, int[] begin, int[] end, int[] strides, int beginMask, int endMask, int ellipsisMask, int newAxisMask, int shrinkAxisMask)
public SDVariable stridedSlice(SDVariable in, long[] begin, long[] end, long[] strides, int beginMask, int endMask, int ellipsisMask, int newAxisMask, int shrinkAxisMask)
public SDVariable stridedSliceBp(SDVariable in, SDVariable grad, long[] begin, long[] end, long[] strides, int beginMask, int endMask, int ellipsisMask, int newAxisMask, int shrinkAxisMask)
public SDVariable stridedSliceBp(SDVariable in, SDVariable grad, SDVariable begin, SDVariable end, SDVariable strides, int beginMask, int endMask, int ellipsisMask, int newAxisMask, int shrinkAxisMask)
public SDVariable scatterAdd(SDVariable ref, SDVariable indices, SDVariable updates)
public SDVariable scatterSub(SDVariable ref, SDVariable indices, SDVariable updates)
public SDVariable scatterMul(SDVariable ref, SDVariable indices, SDVariable updates)
public SDVariable scatterDiv(SDVariable ref, SDVariable indices, SDVariable updates)
public SDVariable scatterMax(SDVariable ref, SDVariable indices, SDVariable updates)
public SDVariable scatterMin(SDVariable ref, SDVariable indices, SDVariable updates)
public SDVariable scatterUpdate(SDVariable ref, SDVariable indices, SDVariable updates)
public SDVariable merge(SDVariable... inputs)
public SDVariable[] switchOp(SDVariable input, SDVariable predicate)
public void validateDifferentialFunctionsameDiff(SDVariable function)
public void validateDifferentialFunctionGraph(SDVariable function)
public SDVariable doRepeat(SDVariable func, SDVariable input)
func
- input
- public SDVariable enter(SDVariable x, String frameName)
public SDVariable enter(SDVariable x, String frameName, boolean isConstant)
public SDVariable exit(SDVariable x)
public SDVariable nextIteration(SDVariable x)
Copyright © 2019. All rights reserved.