public class ExpandDims extends DynamicCustomOp
DynamicCustomOp.DynamicCustomOpsBuilder
axis, bArguments, iArguments, inplaceCall, inputArguments, outputArguments, outputVariables, tArguments
dimensions, extraArgs, inPlace, sameDiff, scalarValue
Constructor and Description |
---|
ExpandDims() |
ExpandDims(INDArray[] inputs,
INDArray[] outputs) |
ExpandDims(SameDiff sameDiff,
SDVariable[] args) |
ExpandDims(SameDiff sameDiff,
SDVariable[] args,
boolean inPlace) |
ExpandDims(SameDiff sameDiff,
SDVariable[] args,
int axis) |
Modifier and Type | Method and Description |
---|---|
void |
assertValidForExecution()
Asserts a valid state for execution,
otherwise throws an
ND4JIllegalStateException |
List<DataType> |
calculateOutputDataTypes(List<DataType> dataTypes)
Calculate the data types for the output arrays.
|
List<SDVariable> |
doDiff(List<SDVariable> i_v)
The actual implementation for automatic differentiation.
|
void |
initFromTensorFlow(NodeDef nodeDef,
SameDiff initWith,
Map<String,AttrValue> attributesForNode,
GraphDef graph)
Initialize the function from the given
NodeDef |
Map<String,Map<String,PropertyMapping>> |
mappingsForFunction()
Returns the mappings for a given function (
for tensorflow and onnx import mapping properties
of this function).
|
String |
onnxName()
The opName of this function in onnx
|
String |
opName()
This method returns op opName as string
|
Map<String,Object> |
propertiesForFunction()
Returns the properties for a given function
|
String |
tensorflowName()
The opName of this function tensorflow
|
addBArgument, addIArgument, addIArgument, addInputArgument, addOutputArgument, addTArgument, bArgs, builder, calculateOutputShape, getBArgument, getDescriptor, getIArgument, getInputArgument, getOutputArgument, getTArgument, iArgs, initFromOnnx, inputArguments, numBArguments, numIArguments, numInputArguments, numOutputArguments, numTArguments, opHash, opNum, opType, outputArguments, outputVariables, outputVariables, removeIArgument, removeInputArgument, removeOutputArgument, removeTArgument, setInputArgument, setInputArguments, setOutputArgument, tArgs, toString, wrapFilterNull, wrapOrNull
arg, arg, argNames, args, attributeAdaptersForFunction, configFieldName, diff, dup, equals, f, getNumOutputs, getValue, hashCode, isConfigProperties, larg, onnxNames, outputVariable, outputVariablesNames, rarg, replaceArg, resolvePropertiesFromSameDiffBeforeExecution, setInstanceId, setPropertiesForFunction, setValueFor, tensorflowNames
clone, finalize, getClass, notify, notifyAll, wait, wait, wait
isInplaceCall
public ExpandDims()
public ExpandDims(SameDiff sameDiff, SDVariable[] args, int axis)
public ExpandDims(SameDiff sameDiff, SDVariable[] args)
public ExpandDims(SameDiff sameDiff, SDVariable[] args, boolean inPlace)
public void initFromTensorFlow(NodeDef nodeDef, SameDiff initWith, Map<String,AttrValue> attributesForNode, GraphDef graph)
DifferentialFunction
NodeDef
initFromTensorFlow
in class DynamicCustomOp
public Map<String,Object> propertiesForFunction()
DifferentialFunction
propertiesForFunction
in class DifferentialFunction
public Map<String,Map<String,PropertyMapping>> mappingsForFunction()
DifferentialFunction
mappingsForFunction
in class DifferentialFunction
public void assertValidForExecution()
CustomOp
ND4JIllegalStateException
assertValidForExecution
in interface CustomOp
assertValidForExecution
in class DynamicCustomOp
public String opName()
DynamicCustomOp
opName
in interface CustomOp
opName
in class DynamicCustomOp
public String onnxName()
DifferentialFunction
onnxName
in class DynamicCustomOp
public String tensorflowName()
DifferentialFunction
tensorflowName
in class DynamicCustomOp
public List<SDVariable> doDiff(List<SDVariable> i_v)
DifferentialFunction
doDiff
in class DynamicCustomOp
public List<DataType> calculateOutputDataTypes(List<DataType> dataTypes)
DifferentialFunction
DifferentialFunction.calculateOutputShape()
, this method differs in that it does not
require the input arrays to be populated.
This is important as it allows us to do greedy datatype inference for the entire net - even if arrays are not
available.calculateOutputDataTypes
in class DifferentialFunction
dataTypes
- The data types of the inputsCopyright © 2019. All rights reserved.