mgo.evolution.algorithm.NoisyProfile
See theNoisyProfile companion class
object NoisyProfile
Attributes
- Companion
- class
- Graph
-
- Supertypes
-
trait Producttrait Mirrorclass Objecttrait Matchableclass Any
- Self type
-
NoisyProfile.type
Members list
Type members
Classlikes
case class Result[N, P](continuous: Vector[Double], discrete: Vector[Int], fitness: Vector[Double], niche: N, replications: Int, individual: Individual[P])
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass Objecttrait Matchableclass AnyShow all
Types
Inherited types
The names of the product elements
The names of the product elements
Attributes
- Inherited from:
- Mirror
The name of the type
The name of the type
Attributes
- Inherited from:
- Mirror
Value members
Concrete methods
def adaptiveBreeding[P : Manifest](lambda: Int, operatorExploration: Double, cloneProbability: Double, aggregation: (Vector[P]) => Vector[Double], discrete: Vector[D], reject: Option[Genome => Boolean]): (ProfileState, Individual[P]) => Genome
def aggregatedFitness[N, P : Manifest](aggregation: (Vector[P]) => Vector[Double]): (Individual[P]) => Vector[Double]
def boundedContinuousProfile[P](continuous: Vector[C], x: Int, nX: Int, min: Double, max: Double): (Individual[P]) => Int
def boundedObjectiveProfile[P : Manifest](aggregation: (Vector[P]) => Vector[Double], x: Int, nX: Int, min: Double, max: Double): (Individual[P]) => Int
def elitism[N, P : Manifest](niche: (Individual[P]) => N, muByNiche: Int, historySize: Int, aggregation: (Vector[P]) => Vector[Double], components: Vector[C]): ProfileState => Individual[P]
def expression[P : Manifest](fitness: (Random, Vector[Double], Vector[Int]) => P, continuous: Vector[C]): (Random, Genome, Long, Boolean) => Individual[P]
def gridContinuousProfile[P](continuous: Vector[C], x: Int, intervals: Vector[Double]): (Individual[P]) => Int
def gridObjectiveProfile[P : Manifest](aggregation: (Vector[P]) => Vector[Double], x: Int, intervals: Vector[Double]): (Individual[P]) => Int
def initialGenomes(lambda: Int, continuous: Vector[C], discrete: Vector[D], reject: Option[Genome => Boolean], rng: Random): Vector[Genome]
def result[N, P : Manifest](population: Vector[Individual[P]], aggregation: (Vector[P]) => Vector[Double], niche: (Individual[P]) => N, continuous: Vector[C], onlyOldest: Boolean, keepAll: Boolean): Vector[Result[N, P]]
def result[N, P : Manifest](noisyProfile: NoisyProfile[N, P], population: Vector[Individual[P]], onlyOldest: Boolean): Vector[Result[N, P]]
Implicits
Implicits
implicit def isAlgorithm[N, P : Manifest]: Algorithm[NoisyProfile[N, P], Individual[P], Genome, ProfileState]
In this article