Packages

  • package root

    The Scala compiler and reflection APIs.

    The Scala compiler and reflection APIs.

    Definition Classes
    root
  • package scala
    Definition Classes
    root
  • package tools
    Definition Classes
    scala
  • package nsc
    Definition Classes
    tools
  • package backend
    Definition Classes
    nsc
  • package jvm
    Definition Classes
    backend
  • package analysis

    Summary on the ASM analyzer framework --------------------------------------

    Summary on the ASM analyzer framework --------------------------------------

    Value

    • Abstract, needs to be implemented for each analysis.
    • Represents the desired information about local variables and stack values, for example:
      • Is this value known to be null / not null?
      • What are the instructions that could potentially have produced this value?

    Interpreter

    • Abstract, needs to be implemented for each analysis. Sometimes one can subclass an existing interpreter, e.g., SourceInterpreter or BasicInterpreter.
    • Multiple abstract methods that receive an instruction and the instruction's input values, and return a value representing the result of that instruction.
      • Note: due to control flow, the interpreter can be invoked multiple times for the same instruction, until reaching a fixed point.
    • Abstract merge function that computes the least upper bound of two values. Used by Frame.merge (see below).

    Frame

    • Can be used directly for many analyses, no subclass required.
    • Every frame has an array of values: one for each local variable and for each stack slot.
      • A top index stores the index of the current stack top
      • NOTE: for a size-2 local variable at index i, the local variable at i+1 is set to an empty value. However, for a size-2 value at index i on the stack, the value at i+1 holds the next stack value. IMPORTANT: this is only the case in ASM's analysis framework, not in bytecode. See comment below.
    • Defines the execute(instruction) method.
      • executing mutates the state of the frame according to the effect of the instruction
        • pop consumed values from the stack
        • pass them to the interpreter together with the instruction
        • if applicable, push the resulting value on the stack
    • Defines the merge(otherFrame) method
      • called by the analyzer when multiple control flow paths lead to an instruction
        • the frame at the branching instruction is merged into the current frame of the instruction (held by the analyzer)
        • mutates the values of the current frame, merges all values using interpreter.merge.

    Analyzer

    • Stores a frame for each instruction
    • merge function takes an instruction and a frame, merges the existing frame for that instr (from the frames array) with the new frame passed as argument. if the frame changed, puts the instruction on the work queue (fixpoint).
    • initial frame: initialized for first instr by calling interpreter.new[...]Value for each slot (locals and params), stored in frames[firstInstr] by calling merge
    • work queue of instructions (queue array, top index for next instruction to analyze)
    • analyze(method): simulate control flow. while work queue non-empty:
      • copy the state of frames[instr] into a local frame current
      • call current.execute(instr, interpreter), mutating the current frame
      • if it's a branching instruction
        • for all potential destination instructions
          • merge the destination instruction frame with the current frame (this enqueues the destination instr if its frame changed)
        • invoke newControlFlowEdge (see below)
    • the analyzer also tracks active exception handlers at each instruction
    • the empty method newControlFlowEdge can be overridden to track control flow if required

    MaxLocals and MaxStack ----------------------

    At the JVM level, long and double values occupy two slots, both as local variables and on the stack, as specified in the JVM spec 2.6.2: "At any point in time, an operand stack has an associated depth, where a value of type long or double contributes two units to the depth and a value of any other type contributes one unit."

    For example, a method class A { def f(a: Long, b: Long) = a + b } has MAXSTACK=4 in the classfile. This value is computed by the ClassWriter / MethodWriter when generating the classfile (we always pass COMPUTE_MAXS to the ClassWriter).

    For running an ASM Analyzer, long and double values occupy two local variable slots, but only a single slot on the call stack, as shown by the following snippet:

    import scala.tools.nsc.backend.jvm._ import scala.tools.nsc.backend.jvm.opt.BytecodeUtils._ import scala.collection.convert.decorateAsScala._ import scala.tools.asm.tree.analysis._

    val cn = AsmUtils.readClass("/Users/luc/scala/scala/sandbox/A.class") val m = cn.methods.iterator.asScala.find(_.name == "f").head

    // the value is read from the classfile, so it's 4 println(s"maxLocals: ${m.maxLocals}, maxStack: ${m.maxStack}") // maxLocals: 5, maxStack: 4

    // we can safely set it to 2 for running the analyzer. m.maxStack = 2

    val a = new Analyzer(new BasicInterpreter) a.analyze(cn.name, m) val addInsn = m.instructions.iterator.asScala.find(_.getOpcode == 97).get // LADD Opcode val addFrame = a.frameAt(addInsn, m)

    addFrame.getStackSize // 2: the two long values only take one slot each addFrame.getLocals // 5: this takes one slot, the two long parameters take 2 slots each

    While running the optimizer, we need to make sure that the maxStack value of a method is large enough for running an ASM analyzer. We don't need to worry if the value is incorrect in the JVM perspective: the value will be re-computed and overwritten in the ClassWriter.

    Lessons learnt while benchmarking the alias tracking analysis -------------------------------------------------------------

    Profiling

    • Use YourKit for finding hotspots (cpu profiling). when it comes to drilling down into the details of a hotspot, don't pay too much attention to the percentages / time counts.
    • Should also try other profilers.
    • Use timers. When a method showed up as a hotspot, I added a timer around that method, and a second one within the method to measure specific parts. The timers slow things down, but the relative numbers show what parts of a method are slow.

    ASM analyzer insights

    • The time for running an analysis depends on the number of locals and the number of instructions. Reducing the number of locals helps speeding up the analysis: there are less values to merge when merging to frames. See also https://github.com/scala/scala-dev/issues/47
    • The common hot spot of an ASM analysis is Frame.merge, for example in producers / consumers.
    • For nullness analysis the time is spent as follows
      • 20% merging nullness values. this is as expected: for example, the same absolute amount of time is spent in merging BasicValues when running a BasicInterpreter.
      • 50% merging alias sets. i tried to optimize what i could out of this.
      • 20% is spent creating new frames from existing ones, see comment on AliasingFrame.init.
    • The implementation of Frame.merge (the main hot spot) contains a megamorphic callsite to interpreter.merge. This can be observed easily by running a test program that either runs a BasicValue analysis only, versus a program that first runs a nullness analysis and then a BasicValue. In an example, the time for the BasicValue analysis goes from 519ms to 1963ms, a 3.8x slowdown.
    • I added counters to the Frame.merge methods for nullness and BasicValue analysis. In the examples I benchmarked, the number of merge invocations was always exactly the same. It would probably be possible to come up with an example where alias set merging forces additional analysis rounds until reaching the fixpoint, but I did not observe such cases.

    To benchmark an analysis, instead of benchmarking analysis while it runs in the compiler backend, one can easily run it from a separate program (or the repl). The bytecode to analyze can simply be parsed from a classfile. See example at the end of this comment.

    Nullness Analysis in Miguel's Optimizer ---------------------------------------

    Miguel implemented alias tracking for nullness analysis differently [1]. Remember that every frame has an array of values. Miguel's idea was to represent aliasing using reference equality in the values array: if two entries in the array point to the same value object, the two entries are aliases in the frame of the given instruction.

    While this idea seems elegant at first sight, Miguel's implementation does not merge frames correctly when it comes to aliasing. Assume in frame 1, values (a, b, c) are aliases, while in frame 2 (a, b) are aliases. When merging the second into the first, we have to make sure that c is removed as an alias of (a, b).

    It would be possible to implement correct alias set merging in Miguel's approach. However, frame merging is the main hot spot of analysis. The computational complexity of implementing alias set merging by traversing the values array and comparing references is too high. The concrete alias set representation that is used in the current implementation (see class AliasingFrame) makes alias set merging more efficient.

    [1] https://github.com/scala-opt/scala/blob/opt/rebase/src/compiler/scala/tools/nsc/backend/bcode/NullnessPropagator.java

    Complexity and scaling of analysis ----------------------------------

    The time complexity of a data flow analysis depends on:

    • The size of the method. The complexity factor is linear (assuming the number of locals and branching instructions remains constant). The main analysis loop runs through all instructions of a method once. Instructions are only re-enqueued if a control flow merge changes the frame at some instruction.
    • The branching instructions. When a second (third, ..) control flow edge arrives at an instruction, the existing frame at the instruction is merged with the one computed on the new branch. If the merge function changes the existing frame, the instruction is enqueued for another analysis. This results in a merge operation for the successors of the instruction.
    • The number of local variables. The hot spot of analysis is frame merging. The merge function iterates through the values in the frame (locals and stack values) and merges them.

    I measured the running time of an analysis for two examples:

    • Keep the number of locals and branching instructions constant, increase the number of instructions. The running time grows linearly with the method size.
    • Increase the size and number of locals in a method. The method size and number of locals grow in the same pace. Here, the running time increase is polynomial. It looks like the complexity is be #instructions * #locals^2 (see below).

    I measured nullness analysis (which tracks aliases) and a SimpleValue analysis. Nullness runs roughly 5x slower (because of alias tracking) at every problem size - this factor doesn't change.

    The numbers below are for nullness. Note that the last column is constant, i.e., the running time is proportional to #ins * #loc^2. Therefore we use this factor when limiting the maximal method size for running an analysis.

    #insns #locals time (ms) time / #ins * #loc2 * 106 1305 156 34 1.07 2610 311 165 0.65 3915 466 490 0.57 5220 621 1200 0.59 6525 776 2220 0.56 7830 931 3830 0.56 9135 1086 6570 0.60 10440 1241 9700 0.60 11745 1396 13800 0.60

    As a second experiment, nullness analysis was run with varying #insns but constant #locals. The last column shows linear complexity with respect to the method size (linearOffset = 2279):

    #insns #locals time (ms) (time + linearOffset) / #insns 5220 621 1090 0.645 6224 621 1690 0.637 7226 621 2280 0.630 8228 621 2870 0.625 9230 621 3530 0.629 10232 621 4130 0.626 11234 621 4770 0.627 12236 621 5520 0.637 13238 621 6170 0.638

    When running a BasicValue analysis, the complexity observation is the same (time is proportional to #ins * #loc^2).

    Measuring analysis execution time ---------------------------------

    See code below.

    Definition Classes
    jvm
  • AliasSet
  • AliasingAnalyzer
  • AliasingFrame
  • BackendUtils
  • ExceptionProducer
  • InitialProducer
  • InitialProducerSourceInterpreter
  • InstructionStackEffect
  • IntIterator
  • NonLubbingTypeFlowInterpreter
  • NotNullValue
  • NullValue
  • NullnessAnalyzer
  • NullnessFrame
  • NullnessInterpreter
  • NullnessValue
  • ParameterProducer
  • ProdConsAnalyzerImpl
  • TypeFlowInterpreter
  • UninitializedLocalProducer
  • UnknownValue1
  • UnknownValue2

abstract class IntIterator extends Iterator[Int]

An iterator over Int (required to prevent boxing the result of next).

Source
AliasingFrame.scala
Linear Supertypes
collection.Iterator[Int], IterableOnceOps[Int, collection.Iterator, collection.Iterator[Int]], collection.IterableOnce[Int], AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. IntIterator
  2. Iterator
  3. IterableOnceOps
  4. IterableOnce
  5. AnyRef
  6. Any
Implicitly
  1. by iterableOnceExtensionMethods
  2. by any2stringadd
  3. by StringFormat
  4. by Ensuring
  5. by ArrowAssoc
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new IntIterator()

Type Members

  1. class GroupedIterator[B >: A] extends AbstractIterator[collection.Seq[B]]
    Definition Classes
    Iterator

Abstract Value Members

  1. abstract def hasNext: Boolean
    Definition Classes
    IntIterator → Iterator
  2. abstract def next(): Int
    Definition Classes
    IntIterator → Iterator

Concrete Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. def +(other: String): String
    Implicit
    This member is added by an implicit conversion from IntIterator to any2stringadd[IntIterator] performed by method any2stringadd in scala.Predef.
    Definition Classes
    any2stringadd
  4. def ++[B >: Int](xs: ⇒ collection.IterableOnce[B]): collection.Iterator[B]
    Definition Classes
    Iterator
    Annotations
    @inline()
  5. def ->[B](y: B): (IntIterator, B)
    Implicit
    This member is added by an implicit conversion from IntIterator to ArrowAssoc[IntIterator] performed by method ArrowAssoc in scala.Predef.
    Definition Classes
    ArrowAssoc
    Annotations
    @inline()
  6. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  7. def addString(b: collection.mutable.StringBuilder): collection.mutable.StringBuilder
    Definition Classes
    IterableOnceOps
  8. def addString(b: collection.mutable.StringBuilder, sep: String): collection.mutable.StringBuilder
    Definition Classes
    IterableOnceOps
  9. def addString(b: collection.mutable.StringBuilder, start: String, sep: String, end: String): b.type
    Definition Classes
    IterableOnceOps
  10. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  11. def buffered: collection.BufferedIterator[Int]
    Definition Classes
    Iterator
  12. def clone(): AnyRef
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )
  13. def collect[B](pf: PartialFunction[Int, B]): collection.Iterator[B]
    Definition Classes
    Iterator → IterableOnceOps
  14. def collectFirst[B](pf: PartialFunction[Int, B]): Option[B]
    Definition Classes
    IterableOnceOps
  15. def concat[B >: Int](xs: ⇒ collection.IterableOnce[B]): collection.Iterator[B]
    Definition Classes
    Iterator
  16. def contains(elem: Any): Boolean
    Definition Classes
    Iterator
  17. def copyToArray[B >: Int](xs: Array[B], start: Int, len: Int): xs.type
    Definition Classes
    IterableOnceOps
  18. def copyToArray[B >: Int](xs: Array[B], start: Int): xs.type
    Definition Classes
    IterableOnceOps
  19. def count(p: (Int) ⇒ Boolean): Int
    Definition Classes
    IterableOnceOps
  20. def distinct: collection.Iterator[Int]
    Definition Classes
    Iterator
  21. def distinctBy[B](f: (Int) ⇒ B): collection.Iterator[Int]
    Definition Classes
    Iterator
  22. def drop(n: Int): collection.Iterator[Int]
    Definition Classes
    Iterator → IterableOnceOps
  23. def dropWhile(p: (Int) ⇒ Boolean): collection.Iterator[Int]
    Definition Classes
    Iterator → IterableOnceOps
  24. def ensuring(cond: (IntIterator) ⇒ Boolean, msg: ⇒ Any): IntIterator
    Implicit
    This member is added by an implicit conversion from IntIterator to Ensuring[IntIterator] performed by method Ensuring in scala.Predef.
    Definition Classes
    Ensuring
  25. def ensuring(cond: (IntIterator) ⇒ Boolean): IntIterator
    Implicit
    This member is added by an implicit conversion from IntIterator to Ensuring[IntIterator] performed by method Ensuring in scala.Predef.
    Definition Classes
    Ensuring
  26. def ensuring(cond: Boolean, msg: ⇒ Any): IntIterator
    Implicit
    This member is added by an implicit conversion from IntIterator to Ensuring[IntIterator] performed by method Ensuring in scala.Predef.
    Definition Classes
    Ensuring
  27. def ensuring(cond: Boolean): IntIterator
    Implicit
    This member is added by an implicit conversion from IntIterator to Ensuring[IntIterator] performed by method Ensuring in scala.Predef.
    Definition Classes
    Ensuring
  28. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  29. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  30. def exists(p: (Int) ⇒ Boolean): Boolean
    Definition Classes
    IterableOnceOps
  31. def filter(p: (Int) ⇒ Boolean): collection.Iterator[Int]
    Definition Classes
    Iterator → IterableOnceOps
  32. def filterNot(p: (Int) ⇒ Boolean): collection.Iterator[Int]
    Definition Classes
    Iterator → IterableOnceOps
  33. def finalize(): Unit
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  34. def find(p: (Int) ⇒ Boolean): Option[Int]
    Definition Classes
    IterableOnceOps
  35. def flatMap[B](f: (Int) ⇒ collection.IterableOnce[B]): collection.Iterator[B]
    Definition Classes
    Iterator → IterableOnceOps
  36. def flatten[B](implicit ev: (Int) ⇒ collection.IterableOnce[B]): collection.Iterator[B]
    Definition Classes
    Iterator → IterableOnceOps
  37. def foldLeft[B](z: B)(op: (B, Int) ⇒ B): B
    Definition Classes
    IterableOnceOps
  38. def foldRight[B](z: B)(op: (Int, B) ⇒ B): B
    Definition Classes
    IterableOnceOps
  39. def forall(p: (Int) ⇒ Boolean): Boolean
    Definition Classes
    IterableOnceOps
  40. def foreach[U](f: (Int) ⇒ U): Unit
    Definition Classes
    IterableOnceOps
  41. def formatted(fmtstr: String): String
    Implicit
    This member is added by an implicit conversion from IntIterator to StringFormat[IntIterator] performed by method StringFormat in scala.Predef.
    Definition Classes
    StringFormat
    Annotations
    @inline()
  42. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  43. def grouped[B >: Int](size: Int): GroupedIterator[B]
    Definition Classes
    Iterator
  44. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  45. def indexOf[B >: Int](elem: B, from: Int): Int
    Definition Classes
    Iterator
  46. def indexOf[B >: Int](elem: B): Int
    Definition Classes
    Iterator
  47. def indexWhere(p: (Int) ⇒ Boolean, from: Int): Int
    Definition Classes
    Iterator
  48. def isEmpty: Boolean
    Definition Classes
    IterableOnceOps
  49. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  50. def iterator(): collection.Iterator[Int]
    Definition Classes
    Iterator → IterableOnce
  51. def knownSize: Int
    Definition Classes
    IterableOnceOps
  52. final def length: Int
    Definition Classes
    Iterator
  53. def map[B](f: (Int) ⇒ B): collection.Iterator[B]
    Definition Classes
    Iterator → IterableOnceOps
  54. def max[B >: Int](implicit ord: math.Ordering[B]): Int
    Definition Classes
    IterableOnceOps
  55. def maxBy[B](f: (Int) ⇒ B)(implicit cmp: math.Ordering[B]): Int
    Definition Classes
    IterableOnceOps
  56. def min[B >: Int](implicit ord: math.Ordering[B]): Int
    Definition Classes
    IterableOnceOps
  57. def minBy[B](f: (Int) ⇒ B)(implicit cmp: math.Ordering[B]): Int
    Definition Classes
    IterableOnceOps
  58. def mkString: String
    Definition Classes
    IterableOnceOps
  59. def mkString(sep: String): String
    Definition Classes
    IterableOnceOps
  60. def mkString(start: String, sep: String, end: String): String
    Definition Classes
    IterableOnceOps
  61. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  62. def nextOption(): Option[Int]
    Definition Classes
    Iterator
  63. def nonEmpty: Boolean
    Definition Classes
    IterableOnceOps
    Annotations
    @deprecatedOverriding( ... , "2.13.0" )
  64. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  65. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  66. def patch[B >: Int](from: Int, patchElems: collection.Iterator[B], replaced: Int): collection.Iterator[B]
    Definition Classes
    Iterator
  67. def product[B >: Int](implicit num: math.Numeric[B]): B
    Definition Classes
    IterableOnceOps
  68. def reduce[B >: Int](op: (B, B) ⇒ B): B
    Definition Classes
    IterableOnceOps
  69. def reduceLeft[B >: Int](op: (B, Int) ⇒ B): B
    Definition Classes
    IterableOnceOps
  70. def reduceLeftOption[B >: Int](op: (B, Int) ⇒ B): Option[B]
    Definition Classes
    IterableOnceOps
  71. def reduceOption[B >: Int](op: (B, B) ⇒ B): Option[B]
    Definition Classes
    IterableOnceOps
  72. def reduceRight[B >: Int](op: (Int, B) ⇒ B): B
    Definition Classes
    IterableOnceOps
  73. def reduceRightOption[B >: Int](op: (Int, B) ⇒ B): Option[B]
    Definition Classes
    IterableOnceOps
  74. def reversed: collection.Iterable[Int]
    Attributes
    protected[this]
    Definition Classes
    IterableOnceOps
  75. def sameElements[B >: Int](that: collection.IterableOnce[B]): Boolean
    Definition Classes
    Iterator
  76. def scanLeft[B](z: B)(op: (B, Int) ⇒ B): collection.Iterator[B]
    Definition Classes
    Iterator → IterableOnceOps
  77. def size: Int
    Definition Classes
    IterableOnceOps
  78. def slice(from: Int, until: Int): collection.Iterator[Int]
    Definition Classes
    Iterator → IterableOnceOps
  79. def sliceIterator(from: Int, until: Int): collection.Iterator[Int]
    Attributes
    protected
    Definition Classes
    Iterator
  80. def sliding[B >: Int](size: Int, step: Int): GroupedIterator[B]
    Definition Classes
    Iterator
  81. def span(p: (Int) ⇒ Boolean): (collection.Iterator[Int], collection.Iterator[Int])
    Definition Classes
    Iterator → IterableOnceOps
  82. def sum[B >: Int](implicit num: math.Numeric[B]): B
    Definition Classes
    IterableOnceOps
  83. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  84. def take(n: Int): collection.Iterator[Int]
    Definition Classes
    Iterator → IterableOnceOps
  85. def takeWhile(p: (Int) ⇒ Boolean): collection.Iterator[Int]
    Definition Classes
    Iterator → IterableOnceOps
  86. def to[C1](factory: Factory[Int, C1]): C1
    Definition Classes
    IterableOnceOps
  87. def toArray[B >: Int](implicit arg0: ClassTag[B]): Array[B]
    Definition Classes
    IterableOnceOps
  88. def toIndexedSeq: collection.immutable.IndexedSeq[Int]
    Definition Classes
    IterableOnceOps
  89. def toList: collection.immutable.List[Int]
    Definition Classes
    IterableOnceOps
  90. def toMap[K, V](implicit ev: <:<[Int, (K, V)]): Map[K, V]
    Definition Classes
    IterableOnceOps
  91. def toSeq: collection.immutable.Seq[Int]
    Definition Classes
    IterableOnceOps
  92. def toSet[B >: Int]: Set[B]
    Definition Classes
    IterableOnceOps
  93. def toString(): String
    Definition Classes
    Iterator → AnyRef → Any
  94. def toVector: collection.immutable.Vector[Int]
    Definition Classes
    IterableOnceOps
  95. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  96. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  97. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )
  98. def withFilter(p: (Int) ⇒ Boolean): collection.Iterator[Int]
    Definition Classes
    Iterator
  99. def zip[B](that: collection.IterableOnce[B]): collection.Iterator[(Int, B)]
    Definition Classes
    Iterator
  100. def zipAll[A1 >: Int, B](that: collection.IterableOnce[B], thisElem: A1, thatElem: B): collection.Iterator[(A1, B)]
    Definition Classes
    Iterator
  101. def zipWithIndex: collection.Iterator[(Int, Int)]
    Definition Classes
    Iterator → IterableOnceOps
  102. def [B](y: B): (IntIterator, B)
    Implicit
    This member is added by an implicit conversion from IntIterator to ArrowAssoc[IntIterator] performed by method ArrowAssoc in scala.Predef.
    Definition Classes
    ArrowAssoc

Deprecated Value Members

  1. def /:[B](z: B)(op: (B, Int) ⇒ B): B
    Implicit
    This member is added by an implicit conversion from IntIterator to IterableOnceExtensionMethods[Int] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (intIterator: IterableOnceExtensionMethods[Int])./:(z)(op)
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated @inline()
    Deprecated

    (Since version 2.13.0) Use .iterator().foldLeft instead of /: on IterableOnce

  2. final def /:[B](z: B)(op: (B, Int) ⇒ B): B
    Definition Classes
    IterableOnceOps
    Annotations
    @deprecated @inline()
    Deprecated

    (Since version 2.13.0) Use foldLeft instead of /:

  3. def :\[B](z: B)(op: (Int, B) ⇒ B): B
    Implicit
    This member is added by an implicit conversion from IntIterator to IterableOnceExtensionMethods[Int] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (intIterator: IterableOnceExtensionMethods[Int]).:\(z)(op)
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated @inline()
    Deprecated

    (Since version 2.13.0) Use .iterator().foldRight instead of :\ on IterableOnce

  4. final def :\[B](z: B)(op: (Int, B) ⇒ B): B
    Definition Classes
    IterableOnceOps
    Annotations
    @deprecated @inline()
    Deprecated

    (Since version 2.13.0) Use foldRight instead of :\

  5. def find(p: (Int) ⇒ Boolean): Option[Int]
    Implicit
    This member is added by an implicit conversion from IntIterator to IterableOnceExtensionMethods[Int] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (intIterator: IterableOnceExtensionMethods[Int]).find(p)
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated
    Deprecated

    (Since version 2.13.0) Use .iterator().find instead of .find on IterableOnce

  6. def flatMap[B](f: (Int) ⇒ collection.IterableOnce[B]): collection.IterableOnce[B]
    Implicit
    This member is added by an implicit conversion from IntIterator to IterableOnceExtensionMethods[Int] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (intIterator: IterableOnceExtensionMethods[Int]).flatMap(f)
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated
    Deprecated

    (Since version 2.13.0) Use .iterator().flatMap instead of .flatMap on IterableOnce or consider requiring an Iterable

  7. def foldLeft[B](z: B)(op: (B, Int) ⇒ B): B
    Implicit
    This member is added by an implicit conversion from IntIterator to IterableOnceExtensionMethods[Int] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (intIterator: IterableOnceExtensionMethods[Int]).foldLeft(z)(op)
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated @inline()
    Deprecated

    (Since version 2.13.0) Use .iterator().foldLeft instead of .foldLeft on IterableOnce

  8. def foldRight[B](z: B)(op: (Int, B) ⇒ B): B
    Implicit
    This member is added by an implicit conversion from IntIterator to IterableOnceExtensionMethods[Int] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (intIterator: IterableOnceExtensionMethods[Int]).foldRight(z)(op)
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated @inline()
    Deprecated

    (Since version 2.13.0) Use .iterator().foldRight instead of .foldLeft on IterableOnce

  9. def foreach[U](f: (Int) ⇒ U): Unit
    Implicit
    This member is added by an implicit conversion from IntIterator to IterableOnceExtensionMethods[Int] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (intIterator: IterableOnceExtensionMethods[Int]).foreach(f)
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated @inline()
    Deprecated

    (Since version 2.13.0) Use .iterator().foreach(...) instead of .foreach(...) on IterableOnce

  10. def isEmpty: Boolean
    Implicit
    This member is added by an implicit conversion from IntIterator to IterableOnceExtensionMethods[Int] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (intIterator: IterableOnceExtensionMethods[Int]).isEmpty
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated
    Deprecated

    (Since version 2.13.0) Use .iterator().isEmpty instead of .isEmpty on IterableOnce

  11. def map[B](f: (Int) ⇒ B): collection.IterableOnce[B]
    Implicit
    This member is added by an implicit conversion from IntIterator to IterableOnceExtensionMethods[Int] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (intIterator: IterableOnceExtensionMethods[Int]).map(f)
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated
    Deprecated

    (Since version 2.13.0) Use .iterator().map instead of .map on IterableOnce or consider requiring an Iterable

  12. def mkString: String
    Implicit
    This member is added by an implicit conversion from IntIterator to IterableOnceExtensionMethods[Int] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (intIterator: IterableOnceExtensionMethods[Int]).mkString
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated
    Deprecated

    (Since version 2.13.0) Use .iterator().mkString instead of .mkString on IterableOnce

  13. def mkString(sep: String): String
    Implicit
    This member is added by an implicit conversion from IntIterator to IterableOnceExtensionMethods[Int] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (intIterator: IterableOnceExtensionMethods[Int]).mkString(sep)
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated
    Deprecated

    (Since version 2.13.0) Use .iterator().mkString instead of .mkString on IterableOnce

  14. def mkString(start: String, sep: String, end: String): String
    Implicit
    This member is added by an implicit conversion from IntIterator to IterableOnceExtensionMethods[Int] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (intIterator: IterableOnceExtensionMethods[Int]).mkString(start, sep, end)
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated
    Deprecated

    (Since version 2.13.0) Use .iterator().mkString instead of .mkString on IterableOnce

  15. def sameElements[B >: A](that: collection.IterableOnce[B]): Boolean
    Implicit
    This member is added by an implicit conversion from IntIterator to IterableOnceExtensionMethods[Int] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (intIterator: IterableOnceExtensionMethods[Int]).sameElements(that)
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated
    Deprecated

    (Since version 2.13.0) Use .iterator().sameElements for sameElements on Iterable or IterableOnce

  16. def to[C1](factory: Factory[Int, C1]): C1
    Implicit
    This member is added by an implicit conversion from IntIterator to IterableOnceExtensionMethods[Int] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (intIterator: IterableOnceExtensionMethods[Int]).to(factory)
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated
    Deprecated

    (Since version 2.13.0) Use factory.from(it) instead of it.to(factory) for IterableOnce

  17. def toArray[B >: A](implicit arg0: ClassTag[B]): Array[B]
    Implicit
    This member is added by an implicit conversion from IntIterator to IterableOnceExtensionMethods[Int] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (intIterator: IterableOnceExtensionMethods[Int]).toArray(arg0)
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated
    Deprecated

    (Since version 2.13.0) Use ArrayBuffer.from(it).toArray

  18. def toBuffer[B >: A]: Buffer[B]
    Implicit
    This member is added by an implicit conversion from IntIterator to IterableOnceExtensionMethods[Int] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (intIterator: IterableOnceExtensionMethods[Int]).toBuffer
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated
    Deprecated

    (Since version 2.13.0) Use ArrayBuffer.from(it) instead of it.toBuffer

  19. final def toBuffer[B >: Int]: Buffer[B]
    Definition Classes
    IterableOnceOps
    Annotations
    @deprecated @inline()
    Deprecated

    (Since version 2.13.0) Use ArrayBuffer.from(it) instead of it.toBuffer

  20. final def toIterable: collection.Iterable[Int]
    Implicit
    This member is added by an implicit conversion from IntIterator to IterableOnceExtensionMethods[Int] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated @inline()
    Deprecated

    (Since version 2.13.0) Use Iterable.from(it) instead of it.toIterable

  21. def toIterator: collection.Iterator[Int]
    Implicit
    This member is added by an implicit conversion from IntIterator to IterableOnceExtensionMethods[Int] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (intIterator: IterableOnceExtensionMethods[Int]).toIterator
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated @inline()
    Deprecated

    (Since version 2.13.0) toIterator has been renamed to iterator()

  22. final def toIterator: collection.Iterator[Int]
    Definition Classes
    IterableOnceOps
    Annotations
    @deprecated @inline()
    Deprecated

    (Since version 2.13.0) Use .iterator() instead of .toIterator

  23. def toList: collection.immutable.List[Int]
    Implicit
    This member is added by an implicit conversion from IntIterator to IterableOnceExtensionMethods[Int] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (intIterator: IterableOnceExtensionMethods[Int]).toList
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated
    Deprecated

    (Since version 2.13.0) Use List.from(it) instead of it.toList

  24. def toMap[K, V](implicit ev: <:<[Int, (K, V)]): Map[K, V]
    Implicit
    This member is added by an implicit conversion from IntIterator to IterableOnceExtensionMethods[Int] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (intIterator: IterableOnceExtensionMethods[Int]).toMap(ev)
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated
    Deprecated

    (Since version 2.13.0) Use Map.from(it) instead of it.toVector on IterableOnce

  25. def toSeq: collection.immutable.Seq[Int]
    Implicit
    This member is added by an implicit conversion from IntIterator to IterableOnceExtensionMethods[Int] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (intIterator: IterableOnceExtensionMethods[Int]).toSeq
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated @inline()
    Deprecated

    (Since version 2.13.0) Use Seq.from(it) instead of it.toSeq

  26. def toSet[B >: A]: Set[B]
    Implicit
    This member is added by an implicit conversion from IntIterator to IterableOnceExtensionMethods[Int] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (intIterator: IterableOnceExtensionMethods[Int]).toSet
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated @inline()
    Deprecated

    (Since version 2.13.0) Use Set.from(it) instead of it.toSet

  27. def toStream: collection.immutable.Stream[Int]
    Implicit
    This member is added by an implicit conversion from IntIterator to IterableOnceExtensionMethods[Int] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (intIterator: IterableOnceExtensionMethods[Int]).toStream
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated @inline()
    Deprecated

    (Since version 2.13.0) Use Stream.from(it) instead of it.toStream

  28. final def toStream: collection.immutable.Stream[Int]
    Definition Classes
    IterableOnceOps
    Annotations
    @deprecated @inline()
    Deprecated

    (Since version 2.13.0) Use Stream.from(it) instead of it.toStream

  29. def toVector: collection.immutable.Vector[Int]
    Implicit
    This member is added by an implicit conversion from IntIterator to IterableOnceExtensionMethods[Int] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (intIterator: IterableOnceExtensionMethods[Int]).toVector
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated @inline()
    Deprecated

    (Since version 2.13.0) Use Vector.from(it) instead of it.toVector on IterableOnce

Inherited from collection.Iterator[Int]

Inherited from IterableOnceOps[Int, collection.Iterator, collection.Iterator[Int]]

Inherited from collection.IterableOnce[Int]

Inherited from AnyRef

Inherited from Any

Inherited by implicit conversion iterableOnceExtensionMethods from IntIterator to IterableOnceExtensionMethods[Int]

Inherited by implicit conversion any2stringadd from IntIterator to any2stringadd[IntIterator]

Inherited by implicit conversion StringFormat from IntIterator to StringFormat[IntIterator]

Inherited by implicit conversion Ensuring from IntIterator to Ensuring[IntIterator]

Inherited by implicit conversion ArrowAssoc from IntIterator to ArrowAssoc[IntIterator]

Ungrouped