object svd extends UFunc
Computes the SVD of a M-by-N matrix Returns an M-by-M matrix U, a vector of singular values, and a N-by-N matrix V'
- Alphabetic
- By Inheritance
- svd
- UFunc
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Type Members
- type DenseSVD = SVD[DenseMatrix[Double], DenseVector[Double]]
-
type
Impl[V, VR] = UImpl[svd.this.type, V, VR]
- Definition Classes
- UFunc
-
type
Impl2[V1, V2, VR] = UImpl2[svd.this.type, V1, V2, VR]
- Definition Classes
- UFunc
-
type
Impl3[V1, V2, V3, VR] = UImpl3[svd.this.type, V1, V2, V3, VR]
- Definition Classes
- UFunc
-
type
Impl4[V1, V2, V3, V4, VR] = UImpl4[svd.this.type, V1, V2, V3, V4, VR]
- Definition Classes
- UFunc
-
type
InPlaceImpl[V] = generic.UFunc.InPlaceImpl[svd.this.type, V]
- Definition Classes
- UFunc
-
type
InPlaceImpl2[V1, V2] = generic.UFunc.InPlaceImpl2[svd.this.type, V1, V2]
- Definition Classes
- UFunc
-
type
InPlaceImpl3[V1, V2, V3] = generic.UFunc.InPlaceImpl3[svd.this.type, V1, V2, V3]
- Definition Classes
- UFunc
- type OpMulMatrixDenseVector[Mat] = UImpl2[OpMulMatrix.type, Mat, DenseVector[Double], DenseVector[Double]]
- type SDenseSVD = SVD[DenseMatrix[Float], DenseVector[Float]]
- case class SVD [M, V](leftVectors: M, singularValues: V, rightVectors: M) extends Product with Serializable
-
type
SinkImpl[S, V] = generic.UFunc.SinkImpl[svd.this.type, S, V]
- Definition Classes
- UFunc
-
type
SinkImpl2[S, V1, V2] = generic.UFunc.SinkImpl2[svd.this.type, S, V1, V2]
- Definition Classes
- UFunc
-
type
SinkImpl3[S, V1, V2, V3] = generic.UFunc.SinkImpl3[svd.this.type, S, V1, V2, V3]
- Definition Classes
- UFunc
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
implicit
def
Svd_Sparse_Impl[Mat, MatTranspose](implicit mul: OpMulMatrixDenseVector[Mat], trans: CanTranspose[Mat, MatTranspose], mulTrans: OpMulMatrixDenseVector[MatTranspose], dimImpl: dim.Impl[Mat, (Int, Int)]): Impl3[Mat, Int, Double, DenseSVD]
Implementation of svds for a sparse matrix.
Implementation of svds for a sparse matrix. The caller provides two operations: mul - matrix multiplies a DenseVector, and trans - matrix transpose.
- Mat
Type of the input matrix of size n*m.
- MatTranspose
Type of the transpose of input matrix of size m*n.
- mul
Operation that multiples a matrix with a DenseVector. Example:
implicit object Op_Mul_Mat_V extends OpMulMatrixDenseVector[UserMatrixType] { def apply(mt: UserMatrixType, iv: DenseVector[Double]) = { // return another DenseVector[Double] = mt * iv } }
- trans
Operator for transposing the matrix. Example:
implicit object Op_Mat_Trans extends CanTranspose[UserMatrixType, UserMatrixTypeTranspose] { def apply(mt: UserMatrixType) = { // return a UserMatrixTypeTranspose which is the transpose of mt } }
- mulTrans
Operation that multiples a transposed matrix with a DenseVector. Example:
// if UserMatrixType and UserMatrixTypeTranspose are actually the same type, you do not need this implicit object Op_Mul_Mat_V extends OpMulMatrixDenseVector[UserMatrixTypeTranspose] { def apply(mtTrans: UserMatrixTypeTranspose, iv: DenseVector[Double]) = { // return another DenseVector[Double] = mtTrans * iv } }
- returns
Left singular vectors matrix of size n*k, singular value vector of length k, and transpose of right singular vectors matrix of size k*m.
-
final
def
apply[V1, V2, V3, V4, VR](v1: V1, v2: V2, v3: V3, v4: V4)(implicit impl: Impl4[V1, V2, V3, V4, VR]): VR
- Definition Classes
- UFunc
-
final
def
apply[V1, V2, V3, VR](v1: V1, v2: V2, v3: V3)(implicit impl: Impl3[V1, V2, V3, VR]): VR
- Definition Classes
- UFunc
-
final
def
apply[V1, V2, VR](v1: V1, v2: V2)(implicit impl: Impl2[V1, V2, VR]): VR
- Definition Classes
- UFunc
-
final
def
apply[V, VR](v: V)(implicit impl: Impl[V, VR]): VR
- Definition Classes
- UFunc
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
implicit
def
canZipMapValuesImpl[T, V1, VR, U](implicit handhold: ScalarOf[T, V1], impl: Impl2[V1, V1, VR], canZipMapValues: CanZipMapValues[T, V1, VR, U]): Impl2[T, T, U]
- Definition Classes
- UFunc
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
-
final
def
inPlace[V, V2, V3](v: V, v2: V2, v3: V3)(implicit impl: generic.UFunc.InPlaceImpl3[svd.this.type, V, V2, V3]): V
- Definition Classes
- UFunc
-
final
def
inPlace[V, V2](v: V, v2: V2)(implicit impl: generic.UFunc.InPlaceImpl2[svd.this.type, V, V2]): V
- Definition Classes
- UFunc
-
final
def
inPlace[V](v: V)(implicit impl: generic.UFunc.InPlaceImpl[svd.this.type, V]): V
- Definition Classes
- UFunc
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
withSink[S](s: S): WithSinkHelp[svd.this.type, S]
- Definition Classes
- UFunc
- implicit object Svd_DM_Impl extends Impl[DenseMatrix[Double], DenseSVD]
- implicit object Svd_DM_Impl_Float extends Impl[DenseMatrix[Float], SDenseSVD]
- implicit object Svd_SM_Impl extends Impl2[CSCMatrix[Double], Int, DenseSVD]
-
object
reduced
extends UFunc
Option for computing part of the M-by-N matrix U: The first min(M,N) columns of U and the first min(M,N) rows of V**T are returned in the arrays U and VT;