object pinv extends UFunc with pinvLowPrio
Computes the Moore-Penrose pseudo inverse of the given real matrix X.
The pseudo inverse is nothing but the least-squares solution to AX=B, hence: d/dX 1/2 (AX-B)2 = AT (AX-B) Solving AT (AX-B) = 0 for X yields AT AX = A^T B
> X
- Alphabetic
- By Inheritance
- pinv
- pinvLowPrio
- UFunc
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Type Members
-
type
Impl[V, VR] = UImpl[pinv.this.type, V, VR]
- Definition Classes
- UFunc
-
type
Impl2[V1, V2, VR] = UImpl2[pinv.this.type, V1, V2, VR]
- Definition Classes
- UFunc
-
type
Impl3[V1, V2, V3, VR] = UImpl3[pinv.this.type, V1, V2, V3, VR]
- Definition Classes
- UFunc
-
type
Impl4[V1, V2, V3, V4, VR] = UImpl4[pinv.this.type, V1, V2, V3, V4, VR]
- Definition Classes
- UFunc
-
type
InPlaceImpl[V] = generic.UFunc.InPlaceImpl[pinv.this.type, V]
- Definition Classes
- UFunc
-
type
InPlaceImpl2[V1, V2] = generic.UFunc.InPlaceImpl2[pinv.this.type, V1, V2]
- Definition Classes
- UFunc
-
type
InPlaceImpl3[V1, V2, V3] = generic.UFunc.InPlaceImpl3[pinv.this.type, V1, V2, V3]
- Definition Classes
- UFunc
-
type
SinkImpl[S, V] = generic.UFunc.SinkImpl[pinv.this.type, S, V]
- Definition Classes
- UFunc
-
type
SinkImpl2[S, V1, V2] = generic.UFunc.SinkImpl2[pinv.this.type, S, V1, V2]
- Definition Classes
- UFunc
-
type
SinkImpl3[S, V1, V2, V3] = generic.UFunc.SinkImpl3[pinv.this.type, S, V1, V2, V3]
- Definition Classes
- UFunc
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
apply[V1, V2, V3, V4, VR](v1: V1, v2: V2, v3: V3, v4: V4)(implicit impl: Impl4[V1, V2, V3, V4, VR]): VR
- Definition Classes
- UFunc
-
final
def
apply[V1, V2, V3, VR](v1: V1, v2: V2, v3: V3)(implicit impl: Impl3[V1, V2, V3, VR]): VR
- Definition Classes
- UFunc
-
final
def
apply[V1, V2, VR](v1: V1, v2: V2)(implicit impl: Impl2[V1, V2, VR]): VR
- Definition Classes
- UFunc
-
final
def
apply[V, VR](v: V)(implicit impl: Impl[V, VR]): VR
- Definition Classes
- UFunc
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
implicit
def
canZipMapValuesImpl[T, V1, VR, U](implicit handhold: ScalarOf[T, V1], impl: Impl2[V1, V1, VR], canZipMapValues: CanZipMapValues[T, V1, VR, U]): Impl2[T, T, U]
- Definition Classes
- UFunc
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native() @HotSpotIntrinsicCandidate()
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
implicit
def
implFromTransposeAndSolve[T, TransT, MulRes, Result](implicit numericT: (T) ⇒ NumericOps[T], trans: CanTranspose[T, TransT], numericTrans: (TransT) ⇒ NumericOps[TransT], mul: operators.OpMulMatrix.Impl2[TransT, T, MulRes], numericMulRes: (MulRes) ⇒ NumericOps[MulRes], solve: operators.OpSolveMatrixBy.Impl2[MulRes, TransT, Result]): Impl[T, Result]
pinv for anything that can be transposed, multiplied with that transposed, and then solved.
pinv for anything that can be transposed, multiplied with that transposed, and then solved. This signature looks intense, but take it one step at a time.
- T
the type of matrix
- TransT
the transpose of that matrix
- MulRes
the result of TransT * T
- Result
the result of MulRes \ TransT
- numericT
: Do I support operators
- trans
: Can I be transposed?
- numericTrans
: Does my transpose support operators
- mul
: Can I multiply T and TransT?
- numericMulRes
: Does the result of that multiplication support operators?
- solve
: Can I solve the system of equations MulRes * x = TransT
- Definition Classes
- pinvLowPrio
-
final
def
inPlace[V, V2, V3](v: V, v2: V2, v3: V3)(implicit impl: generic.UFunc.InPlaceImpl3[pinv.this.type, V, V2, V3]): V
- Definition Classes
- UFunc
-
final
def
inPlace[V, V2](v: V, v2: V2)(implicit impl: generic.UFunc.InPlaceImpl2[pinv.this.type, V, V2]): V
- Definition Classes
- UFunc
-
final
def
inPlace[V](v: V)(implicit impl: generic.UFunc.InPlaceImpl[pinv.this.type, V]): V
- Definition Classes
- UFunc
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- implicit val pinvFromSVD_Double: Impl[DenseMatrix[Double], DenseMatrix[Double]]
- implicit val pinvFromSVD_Float: Impl[DenseMatrix[Float], DenseMatrix[Float]]
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
withSink[S](s: S): WithSinkHelp[pinv.this.type, S]
- Definition Classes
- UFunc