Trait/Object

scalaz

Apply

Related Docs: object Apply | package scalaz

Permalink

trait Apply[F[_]] extends Functor[F] with ApplyParent[F]

scalaz.Applicative without point.

Self Type
Apply[F]
Source
Apply.scala
See also

scalaz.Apply.ApplyLaw

Linear Supertypes
Known Subclasses
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. Apply
  2. ApplyParent
  3. Functor
  4. InvariantFunctor
  5. AnyRef
  6. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Type Members

  1. trait ApplyLaw extends FunctorLaw

    Permalink
  2. trait FunctorLaw extends InvariantFunctorLaw

    Permalink
    Definition Classes
    Functor
  3. trait InvariantFunctorLaw extends AnyRef

    Permalink
    Definition Classes
    InvariantFunctor

Abstract Value Members

  1. abstract def ap[A, B](fa: ⇒ F[A])(f: ⇒ F[(A) ⇒ B]): F[B]

    Permalink

    Sequence f, then fa, combining their results by function application.

    Sequence f, then fa, combining their results by function application.

    NB: with respect to apply2 and all other combinators, as well as scalaz.Bind, the f action appears to the *left*. So f should be the "first" F-action to perform. This is in accordance with all other implementations of this typeclass in common use, which are "function first".

  2. abstract def map[A, B](fa: F[A])(f: (A) ⇒ B): F[B]

    Permalink

    Lift f into F and apply to F[A].

    Lift f into F and apply to F[A].

    Definition Classes
    Functor

Concrete Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. def ap2[A, B, C](fa: ⇒ F[A], fb: ⇒ F[B])(f: F[(A, B) ⇒ C]): F[C]

    Permalink
  5. def ap3[A, B, C, D](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C])(f: F[(A, B, C) ⇒ D]): F[D]

    Permalink
  6. def ap4[A, B, C, D, E](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D])(f: F[(A, B, C, D) ⇒ E]): F[E]

    Permalink
  7. def ap5[A, B, C, D, E, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E])(f: F[(A, B, C, D, E) ⇒ R]): F[R]

    Permalink
  8. def ap6[A, B, C, D, E, FF, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF])(f: F[(A, B, C, D, E, FF) ⇒ R]): F[R]

    Permalink
  9. def ap7[A, B, C, D, E, FF, G, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G])(f: F[(A, B, C, D, E, FF, G) ⇒ R]): F[R]

    Permalink
  10. def ap8[A, B, C, D, E, FF, G, H, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G], fh: ⇒ F[H])(f: F[(A, B, C, D, E, FF, G, H) ⇒ R]): F[R]

    Permalink
  11. def apF[A, B](f: ⇒ F[(A) ⇒ B]): (F[A]) ⇒ F[B]

    Permalink

    Flipped variant of ap.

  12. def apply[A, B](fa: F[A])(f: (A) ⇒ B): F[B]

    Permalink

    Alias for map.

    Alias for map.

    Definition Classes
    Functor
  13. def apply10[A, B, C, D, E, FF, G, H, I, J, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G], fh: ⇒ F[H], fi: ⇒ F[I], fj: ⇒ F[J])(f: (A, B, C, D, E, FF, G, H, I, J) ⇒ R): F[R]

    Permalink
  14. def apply11[A, B, C, D, E, FF, G, H, I, J, K, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G], fh: ⇒ F[H], fi: ⇒ F[I], fj: ⇒ F[J], fk: ⇒ F[K])(f: (A, B, C, D, E, FF, G, H, I, J, K) ⇒ R): F[R]

    Permalink
  15. def apply12[A, B, C, D, E, FF, G, H, I, J, K, L, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G], fh: ⇒ F[H], fi: ⇒ F[I], fj: ⇒ F[J], fk: ⇒ F[K], fl: ⇒ F[L])(f: (A, B, C, D, E, FF, G, H, I, J, K, L) ⇒ R): F[R]

    Permalink
  16. def apply2[A, B, C](fa: ⇒ F[A], fb: ⇒ F[B])(f: (A, B) ⇒ C): F[C]

    Permalink
  17. def apply3[A, B, C, D](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C])(f: (A, B, C) ⇒ D): F[D]

    Permalink
  18. def apply4[A, B, C, D, E](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D])(f: (A, B, C, D) ⇒ E): F[E]

    Permalink
  19. def apply5[A, B, C, D, E, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E])(f: (A, B, C, D, E) ⇒ R): F[R]

    Permalink
  20. def apply6[A, B, C, D, E, FF, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF])(f: (A, B, C, D, E, FF) ⇒ R): F[R]

    Permalink
  21. def apply7[A, B, C, D, E, FF, G, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G])(f: (A, B, C, D, E, FF, G) ⇒ R): F[R]

    Permalink
  22. def apply8[A, B, C, D, E, FF, G, H, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G], fh: ⇒ F[H])(f: (A, B, C, D, E, FF, G, H) ⇒ R): F[R]

    Permalink
  23. def apply9[A, B, C, D, E, FF, G, H, I, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G], fh: ⇒ F[H], fi: ⇒ F[I])(f: (A, B, C, D, E, FF, G, H, I) ⇒ R): F[R]

    Permalink
  24. def applyApplicative: Applicative[[α]\/[F[α], α]]

    Permalink

    Add a unit to any Apply to form an Applicative.

  25. def applyLaw: ApplyLaw

    Permalink
  26. val applySyntax: ApplySyntax[F]

    Permalink
  27. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  28. def bicompose[G[_, _]](implicit arg0: Bifunctor[G]): Bifunctor[[α, β]F[G[α, β]]]

    Permalink

    The composition of Functor F and Bifunctor G, [x, y]F[G[x, y]], is a Bifunctor

    The composition of Functor F and Bifunctor G, [x, y]F[G[x, y]], is a Bifunctor

    Definition Classes
    Functor
  29. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  30. def compose[G[_]](implicit G0: Apply[G]): Apply[[α]F[G[α]]]

    Permalink

    The composition of Applys F and G, [x]F[G[x]], is a Apply

  31. def compose[G[_]](implicit G0: Functor[G]): Functor[[α]F[G[α]]]

    Permalink

    The composition of Functors F and G, [x]F[G[x]], is a Functor

    The composition of Functors F and G, [x]F[G[x]], is a Functor

    Definition Classes
    Functor
  32. def counzip[A, B](a: \/[F[A], F[B]]): F[\/[A, B]]

    Permalink
    Definition Classes
    Functor
  33. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  34. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  35. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  36. def fpair[A](fa: F[A]): F[(A, A)]

    Permalink

    Twin all As in fa.

    Twin all As in fa.

    Definition Classes
    Functor
  37. def fproduct[A, B](fa: F[A])(f: (A) ⇒ B): F[(A, B)]

    Permalink

    Pair all As in fa with the result of function application.

    Pair all As in fa with the result of function application.

    Definition Classes
    Functor
  38. def functorLaw: FunctorLaw

    Permalink
    Definition Classes
    Functor
  39. val functorSyntax: FunctorSyntax[F]

    Permalink
    Definition Classes
    Functor
  40. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  41. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  42. def icompose[G[_]](implicit G0: Contravariant[G]): Contravariant[[α]F[G[α]]]

    Permalink

    The composition of Functor F and Contravariant G, [x]F[G[x]], is contravariant.

    The composition of Functor F and Contravariant G, [x]F[G[x]], is contravariant.

    Definition Classes
    Functor
  43. def invariantFunctorLaw: InvariantFunctorLaw

    Permalink
    Definition Classes
    InvariantFunctor
  44. val invariantFunctorSyntax: InvariantFunctorSyntax[F]

    Permalink
    Definition Classes
    InvariantFunctor
  45. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  46. def lift[A, B](f: (A) ⇒ B): (F[A]) ⇒ F[B]

    Permalink

    Lift f into F.

    Lift f into F.

    Definition Classes
    Functor
  47. def lift10[A, B, C, D, E, FF, G, H, I, J, R](f: (A, B, C, D, E, FF, G, H, I, J) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H], F[I], F[J]) ⇒ F[R]

    Permalink
  48. def lift11[A, B, C, D, E, FF, G, H, I, J, K, R](f: (A, B, C, D, E, FF, G, H, I, J, K) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H], F[I], F[J], F[K]) ⇒ F[R]

    Permalink
  49. def lift12[A, B, C, D, E, FF, G, H, I, J, K, L, R](f: (A, B, C, D, E, FF, G, H, I, J, K, L) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H], F[I], F[J], F[K], F[L]) ⇒ F[R]

    Permalink
  50. def lift2[A, B, C](f: (A, B) ⇒ C): (F[A], F[B]) ⇒ F[C]

    Permalink
  51. def lift3[A, B, C, D](f: (A, B, C) ⇒ D): (F[A], F[B], F[C]) ⇒ F[D]

    Permalink
  52. def lift4[A, B, C, D, E](f: (A, B, C, D) ⇒ E): (F[A], F[B], F[C], F[D]) ⇒ F[E]

    Permalink
  53. def lift5[A, B, C, D, E, R](f: (A, B, C, D, E) ⇒ R): (F[A], F[B], F[C], F[D], F[E]) ⇒ F[R]

    Permalink
  54. def lift6[A, B, C, D, E, FF, R](f: (A, B, C, D, E, FF) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF]) ⇒ F[R]

    Permalink
  55. def lift7[A, B, C, D, E, FF, G, R](f: (A, B, C, D, E, FF, G) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G]) ⇒ F[R]

    Permalink
  56. def lift8[A, B, C, D, E, FF, G, H, R](f: (A, B, C, D, E, FF, G, H) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H]) ⇒ F[R]

    Permalink
  57. def lift9[A, B, C, D, E, FF, G, H, I, R](f: (A, B, C, D, E, FF, G, H, I) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H], F[I]) ⇒ F[R]

    Permalink
  58. def mapply[A, B](a: A)(f: F[(A) ⇒ B]): F[B]

    Permalink

    Lift apply(a), and apply the result to f.

    Lift apply(a), and apply the result to f.

    Definition Classes
    Functor
  59. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  60. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  61. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  62. def product[G[_]](implicit G0: Apply[G]): Apply[[α](F[α], G[α])]

    Permalink

    The product of Applys F and G, [x](F[x], G[x]]), is a Apply

  63. def product[G[_]](implicit G0: Functor[G]): Functor[[α](F[α], G[α])]

    Permalink

    The product of Functors F and G, [x](F[x], G[x]]), is a Functor

    The product of Functors F and G, [x](F[x], G[x]]), is a Functor

    Definition Classes
    Functor
  64. def sequence1[A, G[_]](as: G[F[A]])(implicit arg0: Traverse1[G]): F[G[A]]

    Permalink
  65. def strengthL[A, B](a: A, f: F[B]): F[(A, B)]

    Permalink

    Inject a to the left of Bs in f.

    Inject a to the left of Bs in f.

    Definition Classes
    Functor
  66. def strengthR[A, B](f: F[A], b: B): F[(A, B)]

    Permalink

    Inject b to the right of As in f.

    Inject b to the right of As in f.

    Definition Classes
    Functor
  67. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  68. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  69. def traverse1[A, G[_], B](value: G[A])(f: (A) ⇒ F[B])(implicit G: Traverse1[G]): F[G[B]]

    Permalink
  70. def tuple2[A, B](fa: ⇒ F[A], fb: ⇒ F[B]): F[(A, B)]

    Permalink
  71. def tuple3[A, B, C](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C]): F[(A, B, C)]

    Permalink
  72. def tuple4[A, B, C, D](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D]): F[(A, B, C, D)]

    Permalink
  73. def tuple5[A, B, C, D, E](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E]): F[(A, B, C, D, E)]

    Permalink
  74. def void[A](fa: F[A]): F[Unit]

    Permalink

    Empty fa of meaningful pure values, preserving its structure.

    Empty fa of meaningful pure values, preserving its structure.

    Definition Classes
    Functor
  75. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  76. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  77. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  78. def widen[A, B](fa: F[A])(implicit ev: <~<[A, B]): F[B]

    Permalink

    Functors are covariant by nature, so we can treat an F[A] as an F[B] if A is a subtype of B.

    Functors are covariant by nature, so we can treat an F[A] as an F[B] if A is a subtype of B.

    Definition Classes
    Functor
  79. def xmap[A, B](fa: F[A], f: (A) ⇒ B, g: (B) ⇒ A): F[B]

    Permalink

    Converts ma to a value of type F[B] using the provided functions f and g.

    Converts ma to a value of type F[B] using the provided functions f and g.

    Definition Classes
    FunctorInvariantFunctor
  80. def xmapb[A, B](ma: F[A])(b: Bijection[A, B]): F[B]

    Permalink

    Converts ma to a value of type F[B] using the provided bijection.

    Converts ma to a value of type F[B] using the provided bijection.

    Definition Classes
    InvariantFunctor
  81. def xmapi[A, B](ma: F[A])(iso: Isomorphism.<=>[A, B]): F[B]

    Permalink

    Converts ma to a value of type F[B] using the provided isomorphism.

    Converts ma to a value of type F[B] using the provided isomorphism.

    Definition Classes
    InvariantFunctor

Inherited from ApplyParent[F]

Inherited from Functor[F]

Inherited from InvariantFunctor[F]

Inherited from AnyRef

Inherited from Any

Ungrouped