Trait

scalaz

IsomorphismApplicativePlus

Related Doc: package scalaz

Permalink

trait IsomorphismApplicativePlus[F[_], G[_]] extends ApplicativePlus[F] with IsomorphismEmpty[F, G] with IsomorphismApplicative[F, G]

Source
Isomorphism.scala
Linear Supertypes
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. IsomorphismApplicativePlus
  2. IsomorphismApplicative
  3. IsomorphismApply
  4. IsomorphismFunctor
  5. IsomorphismEmpty
  6. IsomorphismPlus
  7. ApplicativePlus
  8. PlusEmpty
  9. Plus
  10. Applicative
  11. ApplicativeParent
  12. Apply
  13. ApplyParent
  14. Functor
  15. InvariantFunctor
  16. AnyRef
  17. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Type Members

  1. trait ApplicativeLaw extends ApplyLaw

    Permalink
    Definition Classes
    Applicative
  2. trait ApplyLaw extends FunctorLaw

    Permalink
    Definition Classes
    Apply
  3. trait EmptyLaw extends PlusLaw

    Permalink
    Definition Classes
    PlusEmpty
  4. trait FunctorLaw extends InvariantFunctorLaw

    Permalink
    Definition Classes
    Functor
  5. trait InvariantFunctorLaw extends AnyRef

    Permalink
    Definition Classes
    InvariantFunctor
  6. trait PlusLaw extends AnyRef

    Permalink
    Definition Classes
    Plus

Abstract Value Members

  1. implicit abstract def G: ApplicativePlus[G]

    Permalink
  2. abstract def iso: Isomorphism.<~>[F, G]

    Permalink
    Definition Classes
    IsomorphismFunctor

Concrete Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. def ap[A, B](fa: ⇒ F[A])(f: ⇒ F[(A) ⇒ B]): F[B]

    Permalink

    Sequence f, then fa, combining their results by function application.

    Sequence f, then fa, combining their results by function application.

    NB: with respect to apply2 and all other combinators, as well as scalaz.Bind, the f action appears to the *left*. So f should be the "first" F-action to perform. This is in accordance with all other implementations of this typeclass in common use, which are "function first".

    Definition Classes
    IsomorphismApplicativeIsomorphismApplyApply
  5. def ap2[A, B, C](fa: ⇒ F[A], fb: ⇒ F[B])(f: F[(A, B) ⇒ C]): F[C]

    Permalink
    Definition Classes
    Apply
  6. def ap3[A, B, C, D](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C])(f: F[(A, B, C) ⇒ D]): F[D]

    Permalink
    Definition Classes
    Apply
  7. def ap4[A, B, C, D, E](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D])(f: F[(A, B, C, D) ⇒ E]): F[E]

    Permalink
    Definition Classes
    Apply
  8. def ap5[A, B, C, D, E, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E])(f: F[(A, B, C, D, E) ⇒ R]): F[R]

    Permalink
    Definition Classes
    Apply
  9. def ap6[A, B, C, D, E, FF, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF])(f: F[(A, B, C, D, E, FF) ⇒ R]): F[R]

    Permalink
    Definition Classes
    Apply
  10. def ap7[A, B, C, D, E, FF, G, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G])(f: F[(A, B, C, D, E, FF, G) ⇒ R]): F[R]

    Permalink
    Definition Classes
    Apply
  11. def ap8[A, B, C, D, E, FF, G, H, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G], fh: ⇒ F[H])(f: F[(A, B, C, D, E, FF, G, H) ⇒ R]): F[R]

    Permalink
    Definition Classes
    Apply
  12. def apF[A, B](f: ⇒ F[(A) ⇒ B]): (F[A]) ⇒ F[B]

    Permalink

    Flipped variant of ap.

    Flipped variant of ap.

    Definition Classes
    Apply
  13. def applicativeLaw: ApplicativeLaw

    Permalink
    Definition Classes
    Applicative
  14. val applicativePlusSyntax: ApplicativePlusSyntax[F]

    Permalink
    Definition Classes
    ApplicativePlus
  15. val applicativeSyntax: ApplicativeSyntax[F]

    Permalink
    Definition Classes
    Applicative
  16. def apply[A, B](fa: F[A])(f: (A) ⇒ B): F[B]

    Permalink

    Alias for map.

    Alias for map.

    Definition Classes
    Functor
  17. def apply10[A, B, C, D, E, FF, G, H, I, J, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G], fh: ⇒ F[H], fi: ⇒ F[I], fj: ⇒ F[J])(f: (A, B, C, D, E, FF, G, H, I, J) ⇒ R): F[R]

    Permalink
    Definition Classes
    Apply
  18. def apply11[A, B, C, D, E, FF, G, H, I, J, K, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G], fh: ⇒ F[H], fi: ⇒ F[I], fj: ⇒ F[J], fk: ⇒ F[K])(f: (A, B, C, D, E, FF, G, H, I, J, K) ⇒ R): F[R]

    Permalink
    Definition Classes
    Apply
  19. def apply12[A, B, C, D, E, FF, G, H, I, J, K, L, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G], fh: ⇒ F[H], fi: ⇒ F[I], fj: ⇒ F[J], fk: ⇒ F[K], fl: ⇒ F[L])(f: (A, B, C, D, E, FF, G, H, I, J, K, L) ⇒ R): F[R]

    Permalink
    Definition Classes
    Apply
  20. def apply2[A, B, C](fa: ⇒ F[A], fb: ⇒ F[B])(f: (A, B) ⇒ C): F[C]

    Permalink
    Definition Classes
    IsomorphismApplicativeApplicativeApply
  21. def apply3[A, B, C, D](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C])(f: (A, B, C) ⇒ D): F[D]

    Permalink
    Definition Classes
    Apply
  22. def apply4[A, B, C, D, E](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D])(f: (A, B, C, D) ⇒ E): F[E]

    Permalink
    Definition Classes
    Apply
  23. def apply5[A, B, C, D, E, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E])(f: (A, B, C, D, E) ⇒ R): F[R]

    Permalink
    Definition Classes
    Apply
  24. def apply6[A, B, C, D, E, FF, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF])(f: (A, B, C, D, E, FF) ⇒ R): F[R]

    Permalink
    Definition Classes
    Apply
  25. def apply7[A, B, C, D, E, FF, G, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G])(f: (A, B, C, D, E, FF, G) ⇒ R): F[R]

    Permalink
    Definition Classes
    Apply
  26. def apply8[A, B, C, D, E, FF, G, H, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G], fh: ⇒ F[H])(f: (A, B, C, D, E, FF, G, H) ⇒ R): F[R]

    Permalink
    Definition Classes
    Apply
  27. def apply9[A, B, C, D, E, FF, G, H, I, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G], fh: ⇒ F[H], fi: ⇒ F[I])(f: (A, B, C, D, E, FF, G, H, I) ⇒ R): F[R]

    Permalink
    Definition Classes
    Apply
  28. def applyApplicative: Applicative[[α]\/[F[α], α]]

    Permalink

    Add a unit to any Apply to form an Applicative.

    Add a unit to any Apply to form an Applicative.

    Definition Classes
    Apply
  29. def applyLaw: ApplyLaw

    Permalink
    Definition Classes
    Apply
  30. val applySyntax: ApplySyntax[F]

    Permalink
    Definition Classes
    Apply
  31. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  32. def bicompose[G[_, _]](implicit arg0: Bifunctor[G]): Bifunctor[[α, β]F[G[α, β]]]

    Permalink

    The composition of Functor F and Bifunctor G, [x, y]F[G[x, y]], is a Bifunctor

    The composition of Functor F and Bifunctor G, [x, y]F[G[x, y]], is a Bifunctor

    Definition Classes
    Functor
  33. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  34. def compose[G[_]](implicit G0: Applicative[G]): ApplicativePlus[[α]F[G[α]]]

    Permalink

    The composition of ApplicativePlus F and Applicative G, [x]F[G[x]], is a ApplicativePlus

    The composition of ApplicativePlus F and Applicative G, [x]F[G[x]], is a ApplicativePlus

    Definition Classes
    ApplicativePlusApplicative
  35. def compose[G[_]]: PlusEmpty[[α]F[G[α]]]

    Permalink

    The composition of PlusEmpty F and G, [x]F[G[x]], is a PlusEmpty

    The composition of PlusEmpty F and G, [x]F[G[x]], is a PlusEmpty

    Definition Classes
    PlusEmptyPlus
  36. def compose[G[_]](implicit G0: Apply[G]): Apply[[α]F[G[α]]]

    Permalink

    The composition of Applys F and G, [x]F[G[x]], is a Apply

    The composition of Applys F and G, [x]F[G[x]], is a Apply

    Definition Classes
    Apply
  37. def compose[G[_]](implicit G0: Functor[G]): Functor[[α]F[G[α]]]

    Permalink

    The composition of Functors F and G, [x]F[G[x]], is a Functor

    The composition of Functors F and G, [x]F[G[x]], is a Functor

    Definition Classes
    Functor
  38. def counzip[A, B](a: \/[F[A], F[B]]): F[\/[A, B]]

    Permalink
    Definition Classes
    Functor
  39. def empty[A]: F[A]

    Permalink
    Definition Classes
    IsomorphismEmptyPlusEmpty
  40. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  41. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  42. def filterM[A](l: List[A])(f: (A) ⇒ F[Boolean]): F[List[A]]

    Permalink

    Filter l according to an applicative predicate.

    Filter l according to an applicative predicate.

    Definition Classes
    Applicative
  43. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  44. def flip: Applicative[F]

    Permalink

    An Applicative for F in which effects happen in the opposite order.

    An Applicative for F in which effects happen in the opposite order.

    Definition Classes
    ApplicativeApplicativeParent
  45. def fpair[A](fa: F[A]): F[(A, A)]

    Permalink

    Twin all As in fa.

    Twin all As in fa.

    Definition Classes
    Functor
  46. def fproduct[A, B](fa: F[A])(f: (A) ⇒ B): F[(A, B)]

    Permalink

    Pair all As in fa with the result of function application.

    Pair all As in fa with the result of function application.

    Definition Classes
    Functor
  47. def functorLaw: FunctorLaw

    Permalink
    Definition Classes
    Functor
  48. val functorSyntax: FunctorSyntax[F]

    Permalink
    Definition Classes
    Functor
  49. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  50. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  51. def icompose[G[_]](implicit G0: Contravariant[G]): Contravariant[[α]F[G[α]]]

    Permalink

    The composition of Functor F and Contravariant G, [x]F[G[x]], is contravariant.

    The composition of Functor F and Contravariant G, [x]F[G[x]], is contravariant.

    Definition Classes
    Functor
  52. def invariantFunctorLaw: InvariantFunctorLaw

    Permalink
    Definition Classes
    InvariantFunctor
  53. val invariantFunctorSyntax: InvariantFunctorSyntax[F]

    Permalink
    Definition Classes
    InvariantFunctor
  54. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  55. def lift[A, B](f: (A) ⇒ B): (F[A]) ⇒ F[B]

    Permalink

    Lift f into F.

    Lift f into F.

    Definition Classes
    Functor
  56. def lift10[A, B, C, D, E, FF, G, H, I, J, R](f: (A, B, C, D, E, FF, G, H, I, J) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H], F[I], F[J]) ⇒ F[R]

    Permalink
    Definition Classes
    Apply
  57. def lift11[A, B, C, D, E, FF, G, H, I, J, K, R](f: (A, B, C, D, E, FF, G, H, I, J, K) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H], F[I], F[J], F[K]) ⇒ F[R]

    Permalink
    Definition Classes
    Apply
  58. def lift12[A, B, C, D, E, FF, G, H, I, J, K, L, R](f: (A, B, C, D, E, FF, G, H, I, J, K, L) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H], F[I], F[J], F[K], F[L]) ⇒ F[R]

    Permalink
    Definition Classes
    Apply
  59. def lift2[A, B, C](f: (A, B) ⇒ C): (F[A], F[B]) ⇒ F[C]

    Permalink
    Definition Classes
    Apply
  60. def lift3[A, B, C, D](f: (A, B, C) ⇒ D): (F[A], F[B], F[C]) ⇒ F[D]

    Permalink
    Definition Classes
    Apply
  61. def lift4[A, B, C, D, E](f: (A, B, C, D) ⇒ E): (F[A], F[B], F[C], F[D]) ⇒ F[E]

    Permalink
    Definition Classes
    Apply
  62. def lift5[A, B, C, D, E, R](f: (A, B, C, D, E) ⇒ R): (F[A], F[B], F[C], F[D], F[E]) ⇒ F[R]

    Permalink
    Definition Classes
    Apply
  63. def lift6[A, B, C, D, E, FF, R](f: (A, B, C, D, E, FF) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF]) ⇒ F[R]

    Permalink
    Definition Classes
    Apply
  64. def lift7[A, B, C, D, E, FF, G, R](f: (A, B, C, D, E, FF, G) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G]) ⇒ F[R]

    Permalink
    Definition Classes
    Apply
  65. def lift8[A, B, C, D, E, FF, G, H, R](f: (A, B, C, D, E, FF, G, H) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H]) ⇒ F[R]

    Permalink
    Definition Classes
    Apply
  66. def lift9[A, B, C, D, E, FF, G, H, I, R](f: (A, B, C, D, E, FF, G, H, I) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H], F[I]) ⇒ F[R]

    Permalink
    Definition Classes
    Apply
  67. def many[A](a: F[A]): F[List[A]]

    Permalink

    A list of results acquired by repeating a.

    A list of results acquired by repeating a. Never empty; initial failure is an empty list instead.

    Definition Classes
    ApplicativePlus
  68. def map[A, B](fa: F[A])(f: (A) ⇒ B): F[B]

    Permalink

    Lift f into F and apply to F[A].

    Lift f into F and apply to F[A].

    Definition Classes
    IsomorphismFunctorFunctor
  69. def mapply[A, B](a: A)(f: F[(A) ⇒ B]): F[B]

    Permalink

    Lift apply(a), and apply the result to f.

    Lift apply(a), and apply the result to f.

    Definition Classes
    Functor
  70. def monoid[A]: Monoid[F[A]]

    Permalink
    Definition Classes
    PlusEmpty
  71. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  72. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  73. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  74. def plus[A](a: F[A], b: ⇒ F[A]): F[A]

    Permalink
    Definition Classes
    IsomorphismPlusPlus
  75. def plusEmptyLaw: EmptyLaw

    Permalink
    Definition Classes
    PlusEmpty
  76. val plusEmptySyntax: PlusEmptySyntax[F]

    Permalink
    Definition Classes
    PlusEmpty
  77. def plusLaw: PlusLaw

    Permalink
    Definition Classes
    Plus
  78. val plusSyntax: PlusSyntax[F]

    Permalink
    Definition Classes
    Plus
  79. def point[A](a: ⇒ A): F[A]

    Permalink
    Definition Classes
    IsomorphismApplicativeApplicative
  80. def product[G[_]](implicit G0: ApplicativePlus[G]): ApplicativePlus[[α](F[α], G[α])]

    Permalink

    The product of ApplicativePlus F and G, [x](F[x], G[x]]), is a ApplicativePlus

    The product of ApplicativePlus F and G, [x](F[x], G[x]]), is a ApplicativePlus

    Definition Classes
    ApplicativePlus
  81. def product[G[_]](implicit G0: PlusEmpty[G]): PlusEmpty[[α](F[α], G[α])]

    Permalink

    The product of PlusEmpty F and G, [x](F[x], G[x]]), is a PlusEmpty

    The product of PlusEmpty F and G, [x](F[x], G[x]]), is a PlusEmpty

    Definition Classes
    PlusEmpty
  82. def product[G[_]](implicit G0: Plus[G]): Plus[[α](F[α], G[α])]

    Permalink

    The product of Plus F and G, [x](F[x], G[x]]), is a Plus

    The product of Plus F and G, [x](F[x], G[x]]), is a Plus

    Definition Classes
    Plus
  83. def product[G[_]](implicit G0: Applicative[G]): Applicative[[α](F[α], G[α])]

    Permalink

    The product of Applicatives F and G, [x](F[x], G[x]]), is an Applicative

    The product of Applicatives F and G, [x](F[x], G[x]]), is an Applicative

    Definition Classes
    Applicative
  84. def product[G[_]](implicit G0: Apply[G]): Apply[[α](F[α], G[α])]

    Permalink

    The product of Applys F and G, [x](F[x], G[x]]), is a Apply

    The product of Applys F and G, [x](F[x], G[x]]), is a Apply

    Definition Classes
    Apply
  85. def product[G[_]](implicit G0: Functor[G]): Functor[[α](F[α], G[α])]

    Permalink

    The product of Functors F and G, [x](F[x], G[x]]), is a Functor

    The product of Functors F and G, [x](F[x], G[x]]), is a Functor

    Definition Classes
    Functor
  86. final def pure[A](a: ⇒ A): F[A]

    Permalink
    Definition Classes
    Applicative
  87. def replicateM[A](n: Int, fa: F[A]): F[List[A]]

    Permalink

    Performs the action n times, returning the list of results.

    Performs the action n times, returning the list of results.

    Definition Classes
    Applicative
  88. def replicateM_[A](n: Int, fa: F[A]): F[Unit]

    Permalink

    Performs the action n times, returning nothing.

    Performs the action n times, returning nothing.

    Definition Classes
    Applicative
  89. def semigroup[A]: Semigroup[F[A]]

    Permalink
    Definition Classes
    Plus
  90. def sequence[A, G[_]](as: G[F[A]])(implicit arg0: Traverse[G]): F[G[A]]

    Permalink
    Definition Classes
    Applicative
  91. def sequence1[A, G[_]](as: G[F[A]])(implicit arg0: Traverse1[G]): F[G[A]]

    Permalink
    Definition Classes
    Apply
  92. def some[A](a: F[A]): F[List[A]]

    Permalink

    empty or a non-empty list of results acquired by repeating a.

    empty or a non-empty list of results acquired by repeating a.

    Definition Classes
    ApplicativePlus
  93. def strengthL[A, B](a: A, f: F[B]): F[(A, B)]

    Permalink

    Inject a to the left of Bs in f.

    Inject a to the left of Bs in f.

    Definition Classes
    Functor
  94. def strengthR[A, B](f: F[A], b: B): F[(A, B)]

    Permalink

    Inject b to the right of As in f.

    Inject b to the right of As in f.

    Definition Classes
    Functor
  95. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  96. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  97. def traverse[A, G[_], B](value: G[A])(f: (A) ⇒ F[B])(implicit G: Traverse[G]): F[G[B]]

    Permalink
    Definition Classes
    Applicative
  98. def traverse1[A, G[_], B](value: G[A])(f: (A) ⇒ F[B])(implicit G: Traverse1[G]): F[G[B]]

    Permalink
    Definition Classes
    Apply
  99. def tuple2[A, B](fa: ⇒ F[A], fb: ⇒ F[B]): F[(A, B)]

    Permalink
    Definition Classes
    Apply
  100. def tuple3[A, B, C](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C]): F[(A, B, C)]

    Permalink
    Definition Classes
    Apply
  101. def tuple4[A, B, C, D](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D]): F[(A, B, C, D)]

    Permalink
    Definition Classes
    Apply
  102. def tuple5[A, B, C, D, E](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E]): F[(A, B, C, D, E)]

    Permalink
    Definition Classes
    Apply
  103. def unlessM[A](cond: Boolean)(f: ⇒ F[A]): F[Unit]

    Permalink

    Returns the given argument if cond is false, otherwise, unit lifted into F.

    Returns the given argument if cond is false, otherwise, unit lifted into F.

    Definition Classes
    Applicative
  104. def void[A](fa: F[A]): F[Unit]

    Permalink

    Empty fa of meaningful pure values, preserving its structure.

    Empty fa of meaningful pure values, preserving its structure.

    Definition Classes
    Functor
  105. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  106. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  107. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  108. def whenM[A](cond: Boolean)(f: ⇒ F[A]): F[Unit]

    Permalink

    Returns the given argument if cond is true, otherwise, unit lifted into F.

    Returns the given argument if cond is true, otherwise, unit lifted into F.

    Definition Classes
    Applicative
  109. def widen[A, B](fa: F[A])(implicit ev: <~<[A, B]): F[B]

    Permalink

    Functors are covariant by nature, so we can treat an F[A] as an F[B] if A is a subtype of B.

    Functors are covariant by nature, so we can treat an F[A] as an F[B] if A is a subtype of B.

    Definition Classes
    Functor
  110. def xmap[A, B](fa: F[A], f: (A) ⇒ B, g: (B) ⇒ A): F[B]

    Permalink

    Converts ma to a value of type F[B] using the provided functions f and g.

    Converts ma to a value of type F[B] using the provided functions f and g.

    Definition Classes
    FunctorInvariantFunctor
  111. def xmapb[A, B](ma: F[A])(b: Bijection[A, B]): F[B]

    Permalink

    Converts ma to a value of type F[B] using the provided bijection.

    Converts ma to a value of type F[B] using the provided bijection.

    Definition Classes
    InvariantFunctor
  112. def xmapi[A, B](ma: F[A])(iso: Isomorphism.<=>[A, B]): F[B]

    Permalink

    Converts ma to a value of type F[B] using the provided isomorphism.

    Converts ma to a value of type F[B] using the provided isomorphism.

    Definition Classes
    InvariantFunctor

Inherited from IsomorphismApplicative[F, G]

Inherited from IsomorphismApply[F, G]

Inherited from IsomorphismFunctor[F, G]

Inherited from IsomorphismEmpty[F, G]

Inherited from IsomorphismPlus[F, G]

Inherited from ApplicativePlus[F]

Inherited from PlusEmpty[F]

Inherited from Plus[F]

Inherited from Applicative[F]

Inherited from ApplicativeParent[F]

Inherited from Apply[F]

Inherited from ApplyParent[F]

Inherited from Functor[F]

Inherited from InvariantFunctor[F]

Inherited from AnyRef

Inherited from Any

Ungrouped