Packages

t

scalaz

IsomorphismComonadStore

trait IsomorphismComonadStore[F[_], G[_], S] extends ComonadStore[F, S] with IsomorphismComonad[F, G]

Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. IsomorphismComonadStore
  2. IsomorphismComonad
  3. IsomorphismCobind
  4. IsomorphismFunctor
  5. ComonadStore
  6. Comonad
  7. Cobind
  8. Functor
  9. InvariantFunctor
  10. AnyRef
  11. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Type Members

  1. trait CobindLaws extends AnyRef
    Definition Classes
    Cobind
  2. trait ComonadLaws extends CobindLaws
    Definition Classes
    Comonad
  3. trait FunctorLaw extends InvariantFunctorLaw
    Definition Classes
    Functor
  4. trait InvariantFunctorLaw extends AnyRef
    Definition Classes
    InvariantFunctor

Abstract Value Members

  1. implicit abstract def G: ComonadStore[G, S]
  2. abstract def iso: Isomorphism.<~>[F, G]
    Definition Classes
    IsomorphismFunctor

Concrete Value Members

  1. def apply[A, B](fa: F[A])(f: (A) ⇒ B): F[B]

    Alias for map.

    Alias for map.

    Definition Classes
    Functor
  2. def bicompose[G[_, _]](implicit arg0: Bifunctor[G]): Bifunctor[[α, β]F[G[α, β]]]

    The composition of Functor F and Bifunctor G, [x, y]F[G[x, y]], is a Bifunctor

    The composition of Functor F and Bifunctor G, [x, y]F[G[x, y]], is a Bifunctor

    Definition Classes
    Functor
  3. def cobind[A, B](fa: F[A])(f: (F[A]) ⇒ B): F[B]

    Also know as extend

    Also know as extend

    Definition Classes
    IsomorphismCobindCobind
  4. def cobindLaw: CobindLaws
    Definition Classes
    Cobind
  5. val cobindSyntax: CobindSyntax[F]
    Definition Classes
    Cobind
  6. def cojoin[A](a: F[A]): F[F[A]]

    Also known as duplicate

    Also known as duplicate

    Definition Classes
    IsomorphismCobindCobind
  7. def comonadLaw: ComonadLaws
    Definition Classes
    Comonad
  8. val comonadSyntax: ComonadSyntax[F]
    Definition Classes
    Comonad
  9. def compose[G[_]](implicit G0: Functor[G]): Functor[[α]F[G[α]]]

    The composition of Functors F and G, [x]F[G[x]], is a Functor

    The composition of Functors F and G, [x]F[G[x]], is a Functor

    Definition Classes
    Functor
  10. def copoint[A](p: F[A]): A

    Also known as extract / copure

    Also known as extract / copure

    Definition Classes
    IsomorphismComonadComonad
  11. final def copure[A](p: F[A]): A

    alias for copoint

    alias for copoint

    Definition Classes
    Comonad
  12. def counzip[A, B](a: \/[F[A], F[B]]): F[\/[A, B]]
    Definition Classes
    Functor
  13. def experiment[G[_], A](s: (S) ⇒ G[S], w: F[A])(implicit FG: Functor[G]): G[A]
    Definition Classes
    ComonadStore
  14. final def extend[A, B](fa: F[A])(f: (F[A]) ⇒ B): F[B]
    Definition Classes
    Cobind
  15. def fpair[A](fa: F[A]): F[(A, A)]

    Twin all As in fa.

    Twin all As in fa.

    Definition Classes
    Functor
  16. def fproduct[A, B](fa: F[A])(f: (A) ⇒ B): F[(A, B)]

    Pair all As in fa with the result of function application.

    Pair all As in fa with the result of function application.

    Definition Classes
    Functor
  17. def functorLaw: FunctorLaw
    Definition Classes
    Functor
  18. val functorSyntax: FunctorSyntax[F]
    Definition Classes
    Functor
  19. def icompose[G[_]](implicit G0: Contravariant[G]): Contravariant[[α]F[G[α]]]

    The composition of Functor F and Contravariant G, [x]F[G[x]], is contravariant.

    The composition of Functor F and Contravariant G, [x]F[G[x]], is contravariant.

    Definition Classes
    Functor
  20. def invariantFunctorLaw: InvariantFunctorLaw
    Definition Classes
    InvariantFunctor
  21. val invariantFunctorSyntax: InvariantFunctorSyntax[F]
    Definition Classes
    InvariantFunctor
  22. def lift[A, B](f: (A) ⇒ B): (F[A]) ⇒ F[B]

    Lift f into F.

    Lift f into F.

    Definition Classes
    Functor
  23. def map[A, B](fa: F[A])(f: (A) ⇒ B): F[B]

    Lift f into F and apply to F[A].

    Lift f into F and apply to F[A].

    Definition Classes
    IsomorphismFunctorFunctor
  24. def mapply[A, B](a: A)(f: F[(A) ⇒ B]): F[B]

    Lift apply(a), and apply the result to f.

    Lift apply(a), and apply the result to f.

    Definition Classes
    Functor
  25. def peek[A](s: S, w: F[A]): A
    Definition Classes
    IsomorphismComonadStoreComonadStore
  26. def peeks[A](s: (S) ⇒ S, w: F[A]): A
    Definition Classes
    ComonadStore
  27. def pos[A](w: F[A]): S
    Definition Classes
    IsomorphismComonadStoreComonadStore
  28. def product[G[_]](implicit G0: Functor[G]): Functor[[α](F[α], G[α])]

    The product of Functors F and G, [x](F[x], G[x]]), is a Functor

    The product of Functors F and G, [x](F[x], G[x]]), is a Functor

    Definition Classes
    Functor
  29. def seek[A](s: S, w: F[A]): F[A]
    Definition Classes
    ComonadStore
  30. def seeks[A](s: (S) ⇒ S, w: F[A]): F[A]
    Definition Classes
    ComonadStore
  31. def strengthL[A, B](a: A, f: F[B]): F[(A, B)]

    Inject a to the left of Bs in f.

    Inject a to the left of Bs in f.

    Definition Classes
    Functor
  32. def strengthR[A, B](f: F[A], b: B): F[(A, B)]

    Inject b to the right of As in f.

    Inject b to the right of As in f.

    Definition Classes
    Functor
  33. def void[A](fa: F[A]): F[Unit]

    Empty fa of meaningful pure values, preserving its structure.

    Empty fa of meaningful pure values, preserving its structure.

    Definition Classes
    Functor
  34. def widen[A, B](fa: F[A])(implicit ev: <~<[A, B]): F[B]

    Functors are covariant by nature, so we can treat an F[A] as an F[B] if A is a subtype of B.

    Functors are covariant by nature, so we can treat an F[A] as an F[B] if A is a subtype of B.

    Definition Classes
    Functor
  35. def xmap[A, B](fa: F[A], f: (A) ⇒ B, g: (B) ⇒ A): F[B]

    Converts ma to a value of type F[B] using the provided functions f and g.

    Converts ma to a value of type F[B] using the provided functions f and g.

    Definition Classes
    FunctorInvariantFunctor
  36. def xmapb[A, B](ma: F[A])(b: Bijection[A, B]): F[B]

    Converts ma to a value of type F[B] using the provided bijection.

    Converts ma to a value of type F[B] using the provided bijection.

    Definition Classes
    InvariantFunctor
  37. def xmapi[A, B](ma: F[A])(iso: Isomorphism.<=>[A, B]): F[B]

    Converts ma to a value of type F[B] using the provided isomorphism.

    Converts ma to a value of type F[B] using the provided isomorphism.

    Definition Classes
    InvariantFunctor