trait IsomorphismBifunctor[F[_, _], G[_, _]] extends Bifunctor[F]
- Alphabetic
- By Inheritance
- IsomorphismBifunctor
- Bifunctor
- BifunctorParent
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Abstract Value Members
- implicit abstract def G: Bifunctor[G]
- abstract def iso: Isomorphism.<~~>[F, G]
Concrete Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
val
bifunctorSyntax: BifunctorSyntax[F]
- Definition Classes
- Bifunctor
-
def
bimap[A, B, C, D](fab: F[A, B])(f: (A) ⇒ C, g: (B) ⇒ D): F[C, D]
map
over both type parameters.map
over both type parameters.- Definition Classes
- IsomorphismBifunctor → Bifunctor
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
-
def
compose[G[_, _]](implicit G0: Bifunctor[G]): Bifunctor[[α, β]F[G[α, β], G[α, β]]]
The composition of Bifunctors
F
andG
,[x,y]F[G[x,y],G[x,y]]
, is a BifunctorThe composition of Bifunctors
F
andG
,[x,y]F[G[x,y],G[x,y]]
, is a Bifunctor- Definition Classes
- Bifunctor
-
def
embed[G[_], H[_]](implicit G0: Functor[G], H0: Functor[H]): Bifunctor[[α, β]F[G[α], H[β]]]
Embed two Functors , one on each side
Embed two Functors , one on each side
- Definition Classes
- Bifunctor
-
def
embedLeft[G[_]](implicit G0: Functor[G]): Bifunctor[[α, β]F[G[α], β]]
Embed one Functor to the left
Embed one Functor to the left
- Definition Classes
- Bifunctor
-
def
embedRight[H[_]](implicit H0: Functor[H]): Bifunctor[[α, β]F[α, H[β]]]
Embed one Functor to the right
Embed one Functor to the right
- Definition Classes
- Bifunctor
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
def
leftFunctor[X]: Functor[[α$0$]F[α$0$, X]]
Extract the Functor on the first param.
Extract the Functor on the first param.
- Definition Classes
- Bifunctor
-
def
leftMap[A, B, C](fab: F[A, B])(f: (A) ⇒ C): F[C, B]
- Definition Classes
- Bifunctor
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
product[G[_, _]](implicit G0: Bifunctor[G]): Bifunctor[[α, β](F[α, β], G[α, β])]
The product of Bifunctors
F
andG
,[x,y](F[x,y], G[x,y])
, is a BifunctorThe product of Bifunctors
F
andG
,[x,y](F[x,y], G[x,y])
, is a Bifunctor- Definition Classes
- Bifunctor
-
def
rightFunctor[X]: Functor[[β$1$]F[X, β$1$]]
Extract the Functor on the second param.
Extract the Functor on the second param.
- Definition Classes
- Bifunctor
-
def
rightMap[A, B, D](fab: F[A, B])(g: (B) ⇒ D): F[A, D]
- Definition Classes
- Bifunctor
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
def
uFunctor: Functor[[α]F[α, α]]
Unify the functor over both params.
Unify the functor over both params.
- Definition Classes
- Bifunctor
-
def
umap[A, B](faa: F[A, A])(f: (A) ⇒ B): F[B, B]
- Definition Classes
- Bifunctor
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
-
def
widen[A, B, C >: A, D >: B](fab: F[A, B]): F[C, D]
Bifunctors are covariant by nature
Bifunctors are covariant by nature
- Definition Classes
- BifunctorParent