trait IsomorphismEnum[F, G] extends Enum[F]
- Source
- Isomorphism.scala
- Alphabetic
- By Inheritance
- IsomorphismEnum
- Enum
- Order
- Equal
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Type Members
Abstract Value Members
Concrete Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
apply(x: F, y: F): Ordering
- Definition Classes
- Order
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
- def contramap[B](f: (B) ⇒ F): Order[B]
-
def
enumLaw: EnumLaw
- Definition Classes
- Enum
-
val
enumSyntax: EnumSyntax[F]
- Definition Classes
- Enum
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def equal(x: F, y: F): Boolean
-
def
equalIsNatural: Boolean
- returns
true, if
equal(f1, f2)
is known to be equivalent tof1 == f2
- Definition Classes
- Equal
-
def
equalLaw: EqualLaw
- Definition Classes
- Equal
-
val
equalSyntax: EqualSyntax[F]
- Definition Classes
- Equal
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
def
from(a: F): EphemeralStream[F]
- Definition Classes
- Enum
-
def
fromStep(n: Int, a: F): EphemeralStream[F]
- Definition Classes
- Enum
-
def
fromStepTo(n: Int, a: F, z: F): EphemeralStream[F]
- Definition Classes
- Enum
-
def
fromStepToL(n: Int, a: F, z: F): List[F]
- Definition Classes
- Enum
-
def
fromTo(a: F, z: F): EphemeralStream[F]
- Definition Classes
- Enum
-
def
fromToL(a: F, z: F): List[F]
- Definition Classes
- Enum
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
greaterThan(x: F, y: F): Boolean
- Definition Classes
- Order
-
def
greaterThanOrEqual(x: F, y: F): Boolean
- Definition Classes
- Order
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
def
lessThan(x: F, y: F): Boolean
- Definition Classes
- Order
-
def
lessThanOrEqual(x: F, y: F): Boolean
- Definition Classes
- Order
-
def
max: Option[F]
- Definition Classes
- Enum
-
def
max(x: F, y: F): F
- Definition Classes
- Order
-
def
min: Option[F]
- Definition Classes
- Enum
-
def
min(x: F, y: F): F
- Definition Classes
- Order
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
orderLaw: OrderLaw
- Definition Classes
- Order
-
val
orderSyntax: OrderSyntax[F]
- Definition Classes
- Order
-
def
pred(a: F): F
- Definition Classes
- IsomorphismEnum → Enum
-
def
predState[X](f: (F) ⇒ X): State[F, X]
Produce a state value that executes the predecessor (
pred
) on each spin and executing the given function on the current value.Produce a state value that executes the predecessor (
pred
) on each spin and executing the given function on the current value. This is useful to implement decremental looping. Evaluating the state value requires a beginning to decrement from.- f
The function to execute on each spin of the state value.
- Definition Classes
- Enum
-
def
predStateMax[X, Y](f: (F) ⇒ X, k: (X) ⇒ Y): Option[Y]
Produce a value that starts at the maximum (if it exists) and decrements through a state value with the given mapping function.
Produce a value that starts at the maximum (if it exists) and decrements through a state value with the given mapping function. This is useful to implement decremental looping.
- f
The function to execute on each spin of the state value.
- k
The mapping function.
- Definition Classes
- Enum
-
def
predStateMaxM[X, Y](f: (F) ⇒ X, k: (X) ⇒ State[F, Y]): Option[Y]
Produce a value that starts at the maximum (if it exists) and decrements through a state value with the given binding function.
Produce a value that starts at the maximum (if it exists) and decrements through a state value with the given binding function. This is useful to implement decremental looping.
- f
The function to execute on each spin of the state value.
- k
The binding function.
- Definition Classes
- Enum
-
def
predStateZero[X, Y](f: (F) ⇒ X, k: (X) ⇒ Y)(implicit m: Monoid[F]): Y
Produce a value that starts at zero (
Monoid.zero
) and decrements through a state value with the given mapping function.Produce a value that starts at zero (
Monoid.zero
) and decrements through a state value with the given mapping function. This is useful to implement decremental looping.- f
The function to execute on each spin of the state value.
- k
The mapping function.
- m
The implementation of the zero function from which to start.
- Definition Classes
- Enum
-
def
predStateZeroM[X, Y](f: (F) ⇒ X, k: (X) ⇒ State[F, Y])(implicit m: Monoid[F]): Y
Produce a value that starts at zero (
Monoid.zero
) and decrements through a state value with the given binding function.Produce a value that starts at zero (
Monoid.zero
) and decrements through a state value with the given binding function. This is useful to implement decremental looping.- f
The function to execute on each spin of the state value.
- k
The binding function.
- m
The implementation of the zero function from which to start.
- Definition Classes
- Enum
-
def
predn(n: Int, a: F): F
- Definition Classes
- Enum
-
def
predx: Kleisli[Option, F, F]
Moves to the predecessor, unless at the minimum.
Moves to the predecessor, unless at the minimum.
- Definition Classes
- Enum
-
def
reverseOrder: Order[F]
- Definition Classes
- Order
-
def
sort(x: F, y: F): (F, F)
- Definition Classes
- Order
-
def
succ(a: F): F
- Definition Classes
- IsomorphismEnum → Enum
-
def
succState[X](f: (F) ⇒ X): State[F, X]
Produce a state value that executes the successor (
succ
) on each spin and executing the given function on the current value.Produce a state value that executes the successor (
succ
) on each spin and executing the given function on the current value. This is useful to implement incremental looping. Evaluating the state value requires a beginning to increment from.- f
The function to execute on each spin of the state value.
- Definition Classes
- Enum
-
def
succStateMin[X, Y](f: (F) ⇒ X, k: (X) ⇒ Y): Option[Y]
Produce a value that starts at the minimum (if it exists) and increments through a state value with the given mapping function.
Produce a value that starts at the minimum (if it exists) and increments through a state value with the given mapping function. This is useful to implement incremental looping.
- f
The function to execute on each spin of the state value.
- k
The mapping function.
- Definition Classes
- Enum
-
def
succStateMinM[X, Y](f: (F) ⇒ X, k: (X) ⇒ State[F, Y]): Option[Y]
Produce a value that starts at the minimum (if it exists) and increments through a state value with the given binding function.
Produce a value that starts at the minimum (if it exists) and increments through a state value with the given binding function. This is useful to implement incremental looping.
- f
The function to execute on each spin of the state value.
- k
The binding function.
- Definition Classes
- Enum
-
def
succStateZero[X, Y](f: (F) ⇒ X, k: (X) ⇒ Y)(implicit m: Monoid[F]): Y
Produce a value that starts at zero (
Monoid.zero
) and increments through a state value with the given mapping function.Produce a value that starts at zero (
Monoid.zero
) and increments through a state value with the given mapping function. This is useful to implement incremental looping.- f
The function to execute on each spin of the state value.
- k
The mapping function.
- m
The implementation of the zero function from which to start.
- Definition Classes
- Enum
-
def
succStateZeroM[X, Y](f: (F) ⇒ X, k: (X) ⇒ State[F, Y])(implicit m: Monoid[F]): Y
Produce a value that starts at zero (
Monoid.zero
) and increments through a state value with the given binding function.Produce a value that starts at zero (
Monoid.zero
) and increments through a state value with the given binding function. This is useful to implement incremental looping.- f
The function to execute on each spin of the state value.
- k
The binding function.
- m
The implementation of the zero function from which to start.
- Definition Classes
- Enum
-
def
succn(n: Int, a: F): F
- Definition Classes
- Enum
-
def
succx: Kleisli[Option, F, F]
Moves to the successor, unless at the maximum.
Moves to the successor, unless at the maximum.
- Definition Classes
- Enum
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toScalaOrdering: scala.math.Ordering[F]
- Definition Classes
- Order
- Note
Order.fromScalaOrdering(toScalaOrdering).order(x, y)
this.order(x, y)
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )