Packages

trait Bitraverse[F[_, _]] extends Bifunctor[F] with Bifoldable[F]

A type giving rise to two unrelated scalaz.Traverses.

Self Type
Bitraverse[F]
Source
Bitraverse.scala
Linear Supertypes
Known Subclasses
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. Bitraverse
  2. Bifoldable
  3. Bifunctor
  4. BifunctorParent
  5. AnyRef
  6. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Type Members

  1. trait BifoldableLaw extends AnyRef
    Definition Classes
    Bifoldable
  2. class Bitraversal[G[_]] extends AnyRef

Abstract Value Members

  1. abstract def bitraverseImpl[G[_], A, B, C, D](fab: F[A, B])(f: (A) ⇒ G[C], g: (B) ⇒ G[D])(implicit arg0: Applicative[G]): G[F[C, D]]

    Collect Gs while applying f and g in some order.

Concrete Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  5. final def bifoldL[A, B, C](fa: F[A, B], z: C)(f: (C) ⇒ (A) ⇒ C)(g: (C) ⇒ (B) ⇒ C): C

    Curried version of bifoldLeft

    Curried version of bifoldLeft

    Definition Classes
    Bifoldable
  6. def bifoldLShape[A, B, C](fa: F[A, B], z: C)(f: (C, A) ⇒ C)(g: (C, B) ⇒ C): (C, F[Unit, Unit])
  7. def bifoldLeft[A, B, C](fa: F[A, B], z: C)(f: (C, A) ⇒ C)(g: (C, B) ⇒ C): C

    bifoldRight, but defined to run in the opposite direction.

    bifoldRight, but defined to run in the opposite direction.

    Definition Classes
    BitraverseBifoldable
  8. def bifoldMap[A, B, M](fa: F[A, B])(f: (A) ⇒ M)(g: (B) ⇒ M)(implicit F: Monoid[M]): M

    Accumulate As and Bs

    Accumulate As and Bs

    Definition Classes
    BitraverseBifoldable
  9. def bifoldMap1[A, B, M](fa: F[A, B])(f: (A) ⇒ M)(g: (B) ⇒ M)(implicit F: Semigroup[M]): Option[M]
    Definition Classes
    Bifoldable
  10. final def bifoldR[A, B, C](fa: F[A, B], z: ⇒ C)(f: (A) ⇒ (⇒ C) ⇒ C)(g: (B) ⇒ (⇒ C) ⇒ C): C

    Curried version of bifoldRight

    Curried version of bifoldRight

    Definition Classes
    Bifoldable
  11. def bifoldRight[A, B, C](fa: F[A, B], z: ⇒ C)(f: (A, ⇒ C) ⇒ C)(g: (B, ⇒ C) ⇒ C): C

    Accumulate to C starting at the "right".

    Accumulate to C starting at the "right". f and g may be interleaved.

    Definition Classes
    BitraverseBifoldable
  12. def bifoldableLaw: BifoldableLaw
    Definition Classes
    Bifoldable
  13. val bifoldableSyntax: BifoldableSyntax[F]
    Definition Classes
    Bifoldable
  14. val bifunctorSyntax: BifunctorSyntax[F]
    Definition Classes
    Bifunctor
  15. def bimap[A, B, C, D](fab: F[A, B])(f: (A) ⇒ C, g: (B) ⇒ D): F[C, D]

    map over both type parameters.

    map over both type parameters.

    Definition Classes
    BitraverseBifunctor
  16. def bisequence[G[_], A, B](x: F[G[A], G[B]])(implicit arg0: Applicative[G]): G[F[A, B]]
  17. def bitraversal[G[_]](implicit arg0: Applicative[G]): Bitraversal[G]
  18. def bitraversalS[S]: Bitraversal[[β$2$]IndexedStateT[[X]X, S, S, β$2$]]
  19. def bitraverse[G[_], A, B, C, D](fa: F[A, B])(f: (A) ⇒ G[C])(g: (B) ⇒ G[D])(implicit arg0: Applicative[G]): G[F[C, D]]
  20. def bitraverseF[G[_], A, B, C, D](f: (A) ⇒ G[C], g: (B) ⇒ G[D])(implicit arg0: Applicative[G]): (F[A, B]) ⇒ G[F[C, D]]

    Flipped bitraverse.

  21. def bitraverseKTrampoline[S, G[_], A, B, C, D](fa: F[A, B])(f: (A) ⇒ Kleisli[G, S, C])(g: (B) ⇒ Kleisli[G, S, D])(implicit arg0: Applicative[G]): Kleisli[G, S, F[C, D]]

    Bitraverse fa with a Kleisli[G, S, C] and Kleisli[G, S, D], internally using a Trampoline to avoid stack overflow.

  22. def bitraverseS[S, A, B, C, D](fa: F[A, B])(f: (A) ⇒ State[S, C])(g: (B) ⇒ State[S, D]): State[S, F[C, D]]
  23. val bitraverseSyntax: BitraverseSyntax[F]
  24. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  25. def compose[G[_, _]](implicit G0: Bitraverse[G]): Bitraverse[[α, β]F[G[α, β], G[α, β]]]

    The composition of Bitraverses F and G, [x,y]F[G[x,y],G[x,y]], is a Bitraverse

  26. def compose[G[_, _]](implicit G0: Bifoldable[G]): Bifoldable[[α, β]F[G[α, β], G[α, β]]]

    The composition of Bifoldables F and G, [x,y]F[G[x,y],G[x,y]], is a Bifoldable

    The composition of Bifoldables F and G, [x,y]F[G[x,y],G[x,y]], is a Bifoldable

    Definition Classes
    Bifoldable
  27. def compose[G[_, _]](implicit G0: Bifunctor[G]): Bifunctor[[α, β]F[G[α, β], G[α, β]]]

    The composition of Bifunctors F and G, [x,y]F[G[x,y],G[x,y]], is a Bifunctor

    The composition of Bifunctors F and G, [x,y]F[G[x,y],G[x,y]], is a Bifunctor

    Definition Classes
    Bifunctor
  28. def embed[G[_], H[_]](implicit G0: Traverse[G], H0: Traverse[H]): Bitraverse[[α, β]F[G[α], H[β]]]

    Embed a Traverse on each side of this Bitraverse .

  29. def embed[G[_], H[_]](implicit G0: Foldable[G], H0: Foldable[H]): Bifoldable[[α, β]F[G[α], H[β]]]

    Embed one Foldable at each side of this Bifoldable

    Embed one Foldable at each side of this Bifoldable

    Definition Classes
    Bifoldable
  30. def embed[G[_], H[_]](implicit G0: Functor[G], H0: Functor[H]): Bifunctor[[α, β]F[G[α], H[β]]]

    Embed two Functors , one on each side

    Embed two Functors , one on each side

    Definition Classes
    Bifunctor
  31. def embedLeft[G[_]](implicit G0: Traverse[G]): Bitraverse[[α, β]F[G[α], β]]

    Embed a Traverse on the left side of this Bitraverse .

  32. def embedLeft[G[_]](implicit G0: Foldable[G]): Bifoldable[[α, β]F[G[α], β]]

    Embed one Foldable to the left of this Bifoldable .

    Embed one Foldable to the left of this Bifoldable .

    Definition Classes
    Bifoldable
  33. def embedLeft[G[_]](implicit G0: Functor[G]): Bifunctor[[α, β]F[G[α], β]]

    Embed one Functor to the left

    Embed one Functor to the left

    Definition Classes
    Bifunctor
  34. def embedRight[H[_]](implicit H0: Traverse[H]): Bitraverse[[α, β]F[α, H[β]]]

    Embed a Traverse on the right side of this Bitraverse .

  35. def embedRight[H[_]](implicit H0: Foldable[H]): Bifoldable[[α, β]F[α, H[β]]]

    Embed one Foldable to the right of this Bifoldable .

    Embed one Foldable to the right of this Bifoldable .

    Definition Classes
    Bifoldable
  36. def embedRight[H[_]](implicit H0: Functor[H]): Bifunctor[[α, β]F[α, H[β]]]

    Embed one Functor to the right

    Embed one Functor to the right

    Definition Classes
    Bifunctor
  37. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  38. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  39. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  40. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  41. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  42. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  43. def leftFoldable[X]: Foldable[[α$0$]F[α$0$, X]]

    Extract the Foldable on the first parameter.

    Extract the Foldable on the first parameter.

    Definition Classes
    Bifoldable
  44. def leftFunctor[X]: Functor[[α$0$]F[α$0$, X]]

    Extract the Functor on the first param.

    Extract the Functor on the first param.

    Definition Classes
    Bifunctor
  45. def leftMap[A, B, C](fab: F[A, B])(f: (A) ⇒ C): F[C, B]
    Definition Classes
    Bifunctor
  46. def leftTraverse[X]: Traverse[[α$0$]F[α$0$, X]]

    Extract the Traverse on the first param.

  47. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  48. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  49. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  50. def product[G[_, _]](implicit G0: Bitraverse[G]): Bitraverse[[α, β](F[α, β], G[α, β])]

    The product of Bitraverses F and G, [x,y](F[x,y], G[x,y]), is a Bitraverse

  51. def product[G[_, _]](implicit G0: Bifoldable[G]): Bifoldable[[α, β](F[α, β], G[α, β])]

    The product of Bifoldables F and G, [x,y](F[x,y], G[x,y]), is a Bifoldable

    The product of Bifoldables F and G, [x,y](F[x,y], G[x,y]), is a Bifoldable

    Definition Classes
    Bifoldable
  52. def product[G[_, _]](implicit G0: Bifunctor[G]): Bifunctor[[α, β](F[α, β], G[α, β])]

    The product of Bifunctors F and G, [x,y](F[x,y], G[x,y]), is a Bifunctor

    The product of Bifunctors F and G, [x,y](F[x,y], G[x,y]), is a Bifunctor

    Definition Classes
    Bifunctor
  53. def rightFoldable[X]: Foldable[[β$1$]F[X, β$1$]]

    Extract the Foldable on the second parameter.

    Extract the Foldable on the second parameter.

    Definition Classes
    Bifoldable
  54. def rightFunctor[X]: Functor[[β$1$]F[X, β$1$]]

    Extract the Functor on the second param.

    Extract the Functor on the second param.

    Definition Classes
    Bifunctor
  55. def rightMap[A, B, D](fab: F[A, B])(g: (B) ⇒ D): F[A, D]
    Definition Classes
    Bifunctor
  56. def rightTraverse[X]: Traverse[[β$1$]F[X, β$1$]]

    Extract the Traverse on the second param.

  57. def runBitraverseS[S, A, B, C, D](fa: F[A, B], s: S)(f: (A) ⇒ State[S, C])(g: (B) ⇒ State[S, D]): (S, F[C, D])
  58. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  59. def toString(): String
    Definition Classes
    AnyRef → Any
  60. def traverseSTrampoline[S, G[_], A, B, C, D](fa: F[A, B])(f: (A) ⇒ State[S, G[C]])(g: (B) ⇒ State[S, G[D]])(implicit arg0: Applicative[G]): State[S, G[F[C, D]]]

    Bitraverse fa with a State[S, G[C]] and State[S, G[D]], internally using a Trampoline to avoid stack overflow.

  61. def uFoldable: Foldable[[α]F[α, α]]

    Unify the foldable over both params.

    Unify the foldable over both params.

    Definition Classes
    Bifoldable
  62. def uFunctor: Functor[[α]F[α, α]]

    Unify the functor over both params.

    Unify the functor over both params.

    Definition Classes
    Bifunctor
  63. def uTraverse: Traverse[[α]F[α, α]]

    Unify the traverse over both params.

  64. def umap[A, B](faa: F[A, A])(f: (A) ⇒ B): F[B, B]
    Definition Classes
    Bifunctor
  65. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  66. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  67. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  68. def widen[A, B, C >: A, D >: B](fab: F[A, B]): F[C, D]

    Bifunctors are covariant by nature

    Bifunctors are covariant by nature

    Definition Classes
    BifunctorParent

Inherited from Bifoldable[F]

Inherited from Bifunctor[F]

Inherited from BifunctorParent[F]

Inherited from AnyRef

Inherited from Any

Ungrouped