trait Monad[F[_]] extends Applicative[F] with Bind[F]
Monad, an scalaz.Applicative that also supports scalaz.Bind, circumscribed by the monad laws.
- Self Type
- Monad[F]
- Source
- Monad.scala
- See also
- Alphabetic
- By Inheritance
- Monad
- Bind
- Applicative
- InvariantApplicative
- Apply
- Functor
- InvariantFunctor
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Type Members
-
trait
ApplicativeLaw extends ApplyLaw
- Definition Classes
- Applicative
-
trait
ApplyLaw extends FunctorLaw
- Definition Classes
- Apply
-
trait
FlippedApply extends Apply[F]
- Attributes
- protected[this]
- Definition Classes
- Apply
-
trait
BindLaw extends ApplyLaw
- Definition Classes
- Bind
-
trait
FunctorLaw extends InvariantFunctorLaw
- Definition Classes
- Functor
-
trait
InvariantFunctorLaw extends AnyRef
- Definition Classes
- InvariantFunctor
- trait MonadLaw extends ApplicativeLaw with BindLaw
Abstract Value Members
-
abstract
def
bind[A, B](fa: F[A])(f: (A) ⇒ F[B]): F[B]
Equivalent to
join(map(fa)(f))
.Equivalent to
join(map(fa)(f))
.- Definition Classes
- Bind
-
abstract
def
point[A](a: ⇒ A): F[A]
- Definition Classes
- Applicative
Concrete Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
ap[A, B](fa: ⇒ F[A])(f: ⇒ F[(A) ⇒ B]): F[B]
Sequence
f
, thenfa
, combining their results by function application.Sequence
f
, thenfa
, combining their results by function application.NB: with respect to
apply2
and all other combinators, as well as scalaz.Bind, thef
action appears to the *left*. Sof
should be the "first"F
-action to perform. This is in accordance with all other implementations of this typeclass in common use, which are "function first". -
def
ap2[A, B, C](fa: ⇒ F[A], fb: ⇒ F[B])(f: F[(A, B) ⇒ C]): F[C]
- Definition Classes
- Apply
-
def
ap3[A, B, C, D](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C])(f: F[(A, B, C) ⇒ D]): F[D]
- Definition Classes
- Apply
-
def
ap4[A, B, C, D, E](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D])(f: F[(A, B, C, D) ⇒ E]): F[E]
- Definition Classes
- Apply
-
def
ap5[A, B, C, D, E, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E])(f: F[(A, B, C, D, E) ⇒ R]): F[R]
- Definition Classes
- Apply
-
def
ap6[A, B, C, D, E, FF, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF])(f: F[(A, B, C, D, E, FF) ⇒ R]): F[R]
- Definition Classes
- Apply
-
def
ap7[A, B, C, D, E, FF, G, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G])(f: F[(A, B, C, D, E, FF, G) ⇒ R]): F[R]
- Definition Classes
- Apply
-
def
ap8[A, B, C, D, E, FF, G, H, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G], fh: ⇒ F[H])(f: F[(A, B, C, D, E, FF, G, H) ⇒ R]): F[R]
- Definition Classes
- Apply
-
def
apF[A, B](f: ⇒ F[(A) ⇒ B]): (F[A]) ⇒ F[B]
Flipped variant of
ap
.Flipped variant of
ap
.- Definition Classes
- Apply
-
def
applicativeLaw: ApplicativeLaw
- Definition Classes
- Applicative
-
val
applicativeSyntax: ApplicativeSyntax[F]
- Definition Classes
- Applicative
-
def
apply[A, B](fa: F[A])(f: (A) ⇒ B): F[B]
Alias for
map
.Alias for
map
.- Definition Classes
- Functor
-
def
apply10[A, B, C, D, E, FF, G, H, I, J, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G], fh: ⇒ F[H], fi: ⇒ F[I], fj: ⇒ F[J])(f: (A, B, C, D, E, FF, G, H, I, J) ⇒ R): F[R]
- Definition Classes
- Apply
-
def
apply11[A, B, C, D, E, FF, G, H, I, J, K, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G], fh: ⇒ F[H], fi: ⇒ F[I], fj: ⇒ F[J], fk: ⇒ F[K])(f: (A, B, C, D, E, FF, G, H, I, J, K) ⇒ R): F[R]
- Definition Classes
- Apply
-
def
apply12[A, B, C, D, E, FF, G, H, I, J, K, L, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G], fh: ⇒ F[H], fi: ⇒ F[I], fj: ⇒ F[J], fk: ⇒ F[K], fl: ⇒ F[L])(f: (A, B, C, D, E, FF, G, H, I, J, K, L) ⇒ R): F[R]
- Definition Classes
- Apply
- def apply2[A, B, C](fa: ⇒ F[A], fb: ⇒ F[B])(f: (A, B) ⇒ C): F[C]
-
def
apply3[A, B, C, D](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C])(f: (A, B, C) ⇒ D): F[D]
- Definition Classes
- Apply
-
def
apply4[A, B, C, D, E](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D])(f: (A, B, C, D) ⇒ E): F[E]
- Definition Classes
- Apply
-
def
apply5[A, B, C, D, E, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E])(f: (A, B, C, D, E) ⇒ R): F[R]
- Definition Classes
- Apply
-
def
apply6[A, B, C, D, E, FF, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF])(f: (A, B, C, D, E, FF) ⇒ R): F[R]
- Definition Classes
- Apply
-
def
apply7[A, B, C, D, E, FF, G, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G])(f: (A, B, C, D, E, FF, G) ⇒ R): F[R]
- Definition Classes
- Apply
-
def
apply8[A, B, C, D, E, FF, G, H, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G], fh: ⇒ F[H])(f: (A, B, C, D, E, FF, G, H) ⇒ R): F[R]
- Definition Classes
- Apply
-
def
apply9[A, B, C, D, E, FF, G, H, I, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G], fh: ⇒ F[H], fi: ⇒ F[I])(f: (A, B, C, D, E, FF, G, H, I) ⇒ R): F[R]
- Definition Classes
- Apply
-
def
applyApplicative: Applicative[[α]\/[F[α], α]]
Add a unit to any Apply to form an Applicative.
Add a unit to any Apply to form an Applicative.
- Definition Classes
- Apply
-
def
applyLaw: ApplyLaw
- Definition Classes
- Apply
-
val
applySyntax: ApplySyntax[F]
- Definition Classes
- Apply
-
final
def
applying1[Z, A1](f: (A1) ⇒ Z)(implicit a1: F[A1]): F[Z]
- Definition Classes
- Apply
-
final
def
applying2[Z, A1, A2](f: (A1, A2) ⇒ Z)(implicit a1: F[A1], a2: F[A2]): F[Z]
- Definition Classes
- Apply
-
final
def
applying3[Z, A1, A2, A3](f: (A1, A2, A3) ⇒ Z)(implicit a1: F[A1], a2: F[A2], a3: F[A3]): F[Z]
- Definition Classes
- Apply
-
final
def
applying4[Z, A1, A2, A3, A4](f: (A1, A2, A3, A4) ⇒ Z)(implicit a1: F[A1], a2: F[A2], a3: F[A3], a4: F[A4]): F[Z]
- Definition Classes
- Apply
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
bicompose[G[_, _]](implicit arg0: Bifunctor[G]): Bifunctor[[α, β]F[G[α, β]]]
The composition of Functor
F
and BifunctorG
,[x, y]F[G[x, y]]
, is a BifunctorThe composition of Functor
F
and BifunctorG
,[x, y]F[G[x, y]]
, is a Bifunctor- Definition Classes
- Functor
-
def
bindLaw: BindLaw
- Definition Classes
- Bind
-
val
bindSyntax: BindSyntax[F]
- Definition Classes
- Bind
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
-
def
compose[G[_]](implicit G0: Applicative[G]): Applicative[[α]F[G[α]]]
The composition of Applicatives
F
andG
,[x]F[G[x]]
, is an ApplicativeThe composition of Applicatives
F
andG
,[x]F[G[x]]
, is an Applicative- Definition Classes
- Applicative
-
def
compose[G[_]](implicit G0: Apply[G]): Apply[[α]F[G[α]]]
The composition of Applys
F
andG
,[x]F[G[x]]
, is a ApplyThe composition of Applys
F
andG
,[x]F[G[x]]
, is a Apply- Definition Classes
- Apply
-
def
compose[G[_]](implicit G0: Functor[G]): Functor[[α]F[G[α]]]
The composition of Functors
F
andG
,[x]F[G[x]]
, is a FunctorThe composition of Functors
F
andG
,[x]F[G[x]]
, is a Functor- Definition Classes
- Functor
-
def
counzip[A, B](a: \/[F[A], F[B]]): F[\/[A, B]]
- Definition Classes
- Functor
-
def
discardLeft[A, B](fa: ⇒ F[A], fb: ⇒ F[B]): F[B]
Combine
fa
andfb
according toApply[F]
with a function that discards theA
(s)Combine
fa
andfb
according toApply[F]
with a function that discards theA
(s)- Definition Classes
- Apply
-
def
discardRight[A, B](fa: ⇒ F[A], fb: ⇒ F[B]): F[A]
Combine
fa
andfb
according toApply[F]
with a function that discards theB
(s)Combine
fa
andfb
according toApply[F]
with a function that discards theB
(s)- Definition Classes
- Apply
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
filterM[A](l: IList[A])(f: (A) ⇒ F[Boolean]): F[IList[A]]
Filter
l
according to an applicative predicate.Filter
l
according to an applicative predicate.- Definition Classes
- Applicative
-
def
filterM[A](l: List[A])(f: (A) ⇒ F[Boolean]): F[List[A]]
Filter
l
according to an applicative predicate.Filter
l
according to an applicative predicate.- Definition Classes
- Applicative
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
def
flip: Applicative[F]
An
Applicative
forF
in which effects happen in the opposite order.An
Applicative
forF
in which effects happen in the opposite order.- Definition Classes
- Applicative → Apply
-
def
forever[A, B](fa: F[A]): F[B]
Repeats an applicative action infinitely
Repeats an applicative action infinitely
- Definition Classes
- Apply
-
def
fpair[A](fa: F[A]): F[(A, A)]
Twin all
A
s infa
.Twin all
A
s infa
.- Definition Classes
- Functor
-
def
fproduct[A, B](fa: F[A])(f: (A) ⇒ B): F[(A, B)]
Pair all
A
s infa
with the result of function application.Pair all
A
s infa
with the result of function application.- Definition Classes
- Functor
-
def
functorLaw: FunctorLaw
- Definition Classes
- Functor
-
val
functorSyntax: FunctorSyntax[F]
- Definition Classes
- Functor
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
icompose[G[_]](implicit G0: Contravariant[G]): Contravariant[[α]F[G[α]]]
The composition of Functor F and Contravariant G,
[x]F[G[x]]
, is contravariant.The composition of Functor F and Contravariant G,
[x]F[G[x]]
, is contravariant.- Definition Classes
- Functor
-
def
ifM[B](value: F[Boolean], ifTrue: ⇒ F[B], ifFalse: ⇒ F[B]): F[B]
if
lifted into a binding.if
lifted into a binding. Unlikelift3((t,c,a)=>if(t)c else a)
, this will only include context from the chosen ofifTrue
andifFalse
, not the other.- Definition Classes
- Bind
-
val
invariantApplicativeSyntax: InvariantApplicativeSyntax[F]
- Definition Classes
- InvariantApplicative
-
def
invariantFunctorLaw: InvariantFunctorLaw
- Definition Classes
- InvariantFunctor
-
val
invariantFunctorSyntax: InvariantFunctorSyntax[F]
- Definition Classes
- InvariantFunctor
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
def
iterateUntil[A](f: F[A])(p: (A) ⇒ Boolean): F[A]
Execute an action repeatedly until its result satisfies the given predicate and return that result, discarding all others.
-
def
iterateWhile[A](f: F[A])(p: (A) ⇒ Boolean): F[A]
Execute an action repeatedly until its result fails to satisfy the given predicate and return that result, discarding all others.
-
def
join[A](ffa: F[F[A]]): F[A]
Sequence the inner
F
ofFFA
after the outerF
, forming a singleF[A]
.Sequence the inner
F
ofFFA
after the outerF
, forming a singleF[A]
.- Definition Classes
- Bind
-
def
lift[A, B](f: (A) ⇒ B): (F[A]) ⇒ F[B]
Lift
f
intoF
.Lift
f
intoF
.- Definition Classes
- Functor
-
def
lift10[A, B, C, D, E, FF, G, H, I, J, R](f: (A, B, C, D, E, FF, G, H, I, J) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H], F[I], F[J]) ⇒ F[R]
- Definition Classes
- Apply
-
def
lift11[A, B, C, D, E, FF, G, H, I, J, K, R](f: (A, B, C, D, E, FF, G, H, I, J, K) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H], F[I], F[J], F[K]) ⇒ F[R]
- Definition Classes
- Apply
-
def
lift12[A, B, C, D, E, FF, G, H, I, J, K, L, R](f: (A, B, C, D, E, FF, G, H, I, J, K, L) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H], F[I], F[J], F[K], F[L]) ⇒ F[R]
- Definition Classes
- Apply
-
def
lift2[A, B, C](f: (A, B) ⇒ C): (F[A], F[B]) ⇒ F[C]
- Definition Classes
- Apply
-
def
lift3[A, B, C, D](f: (A, B, C) ⇒ D): (F[A], F[B], F[C]) ⇒ F[D]
- Definition Classes
- Apply
-
def
lift4[A, B, C, D, E](f: (A, B, C, D) ⇒ E): (F[A], F[B], F[C], F[D]) ⇒ F[E]
- Definition Classes
- Apply
-
def
lift5[A, B, C, D, E, R](f: (A, B, C, D, E) ⇒ R): (F[A], F[B], F[C], F[D], F[E]) ⇒ F[R]
- Definition Classes
- Apply
-
def
lift6[A, B, C, D, E, FF, R](f: (A, B, C, D, E, FF) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF]) ⇒ F[R]
- Definition Classes
- Apply
-
def
lift7[A, B, C, D, E, FF, G, R](f: (A, B, C, D, E, FF, G) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G]) ⇒ F[R]
- Definition Classes
- Apply
-
def
lift8[A, B, C, D, E, FF, G, H, R](f: (A, B, C, D, E, FF, G, H) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H]) ⇒ F[R]
- Definition Classes
- Apply
-
def
lift9[A, B, C, D, E, FF, G, H, I, R](f: (A, B, C, D, E, FF, G, H, I) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H], F[I]) ⇒ F[R]
- Definition Classes
- Apply
-
def
liftReducer[A, B](implicit r: Reducer[A, B]): Reducer[F[A], F[B]]
- Definition Classes
- Apply
-
def
map[A, B](fa: F[A])(f: (A) ⇒ B): F[B]
Lift
f
intoF
and apply toF[A]
.Lift
f
intoF
and apply toF[A]
.- Definition Classes
- Monad → Applicative → Functor
-
def
mapply[A, B](a: A)(f: F[(A) ⇒ B]): F[B]
Lift
apply(a)
, and apply the result tof
.Lift
apply(a)
, and apply the result tof
.- Definition Classes
- Functor
- def monadLaw: MonadLaw
- val monadSyntax: MonadSyntax[F]
-
def
mproduct[A, B](fa: F[A])(f: (A) ⇒ F[B]): F[(A, B)]
Pair
A
with the result of function application.Pair
A
with the result of function application.- Definition Classes
- Bind
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
par: Par[F]
A lawful implementation of this that is isomorphic up to the methods defined on Applicative allowing for optimised parallel implementations that would otherwise violate laws of more specific typeclasses (e.g.
A lawful implementation of this that is isomorphic up to the methods defined on Applicative allowing for optimised parallel implementations that would otherwise violate laws of more specific typeclasses (e.g. Monad).
- Definition Classes
- Applicative
-
def
product[G[_]](implicit G0: Monad[G]): Monad[[α](F[α], G[α])]
The product of Monad
F
andG
,[x](F[x], G[x]])
, is a Monad -
def
product[G[_]](implicit G0: Bind[G]): Bind[[α](F[α], G[α])]
The product of Bind
F
andG
,[x](F[x], G[x]])
, is a BindThe product of Bind
F
andG
,[x](F[x], G[x]])
, is a Bind- Definition Classes
- Bind
-
def
product[G[_]](implicit G0: Applicative[G]): Applicative[[α](F[α], G[α])]
The product of Applicatives
F
andG
,[x](F[x], G[x]])
, is an ApplicativeThe product of Applicatives
F
andG
,[x](F[x], G[x]])
, is an Applicative- Definition Classes
- Applicative
-
def
product[G[_]](implicit G0: Apply[G]): Apply[[α](F[α], G[α])]
The product of Applys
F
andG
,[x](F[x], G[x]])
, is a ApplyThe product of Applys
F
andG
,[x](F[x], G[x]])
, is a Apply- Definition Classes
- Apply
-
def
product[G[_]](implicit G0: Functor[G]): Functor[[α](F[α], G[α])]
The product of Functors
F
andG
,[x](F[x], G[x]])
, is a FunctorThe product of Functors
F
andG
,[x](F[x], G[x]])
, is a Functor- Definition Classes
- Functor
-
final
def
pure[A](a: ⇒ A): F[A]
- Definition Classes
- Applicative
-
def
replicateM[A](n: Int, fa: F[A]): F[IList[A]]
Performs the action
n
times, returning the list of results.Performs the action
n
times, returning the list of results.- Definition Classes
- Applicative
-
def
replicateM_[A](n: Int, fa: F[A]): F[Unit]
Performs the action
n
times, returning nothing.Performs the action
n
times, returning nothing.- Definition Classes
- Applicative
-
def
sequence[A, G[_]](as: G[F[A]])(implicit arg0: Traverse[G]): F[G[A]]
- Definition Classes
- Applicative
-
def
sequence1[A, G[_]](as: G[F[A]])(implicit arg0: Traverse1[G]): F[G[A]]
- Definition Classes
- Apply
-
def
strengthL[A, B](a: A, f: F[B]): F[(A, B)]
Inject
a
to the left ofB
s inf
.Inject
a
to the left ofB
s inf
.- Definition Classes
- Functor
-
def
strengthR[A, B](f: F[A], b: B): F[(A, B)]
Inject
b
to the right ofA
s inf
.Inject
b
to the right ofA
s inf
.- Definition Classes
- Functor
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
def
traverse[A, G[_], B](value: G[A])(f: (A) ⇒ F[B])(implicit G: Traverse[G]): F[G[B]]
- Definition Classes
- Applicative
-
def
traverse1[A, G[_], B](value: G[A])(f: (A) ⇒ F[B])(implicit G: Traverse1[G]): F[G[B]]
- Definition Classes
- Apply
-
def
tuple2[A, B](fa: ⇒ F[A], fb: ⇒ F[B]): F[(A, B)]
- Definition Classes
- Apply
-
def
tuple3[A, B, C](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C]): F[(A, B, C)]
- Definition Classes
- Apply
-
def
tuple4[A, B, C, D](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D]): F[(A, B, C, D)]
- Definition Classes
- Apply
-
def
tuple5[A, B, C, D, E](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E]): F[(A, B, C, D, E)]
- Definition Classes
- Apply
-
def
unfoldrOpt[S, A, B](seed: S)(f: (S) ⇒ Maybe[(F[A], S)])(implicit R: Reducer[A, B]): Maybe[F[B]]
Unfold
seed
to the right and combine effects left-to-right, using the given Reducer to combine values. -
def
unlessM[A](cond: Boolean)(f: ⇒ F[A]): F[Unit]
Returns the given argument if
cond
isfalse
, otherwise, unit lifted into F.Returns the given argument if
cond
isfalse
, otherwise, unit lifted into F.- Definition Classes
- Applicative
-
def
untilM[G[_], A](f: F[A], cond: ⇒ F[Boolean])(implicit G: MonadPlus[G]): F[G[A]]
Execute an action repeatedly until the
Boolean
condition returnstrue
.Execute an action repeatedly until the
Boolean
condition returnstrue
. The condition is evaluated after the loop body. Collects results into an arbitraryMonadPlus
value, such as aList
. -
def
untilM_[A](f: F[A], cond: ⇒ F[Boolean]): F[Unit]
Execute an action repeatedly until the
Boolean
condition returnstrue
.Execute an action repeatedly until the
Boolean
condition returnstrue
. The condition is evaluated after the loop body. Discards results. -
def
void[A](fa: F[A]): F[Unit]
Empty
fa
of meaningful pure values, preserving its structure.Empty
fa
of meaningful pure values, preserving its structure.- Definition Classes
- Functor
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
-
def
whenM[A](cond: Boolean)(f: ⇒ F[A]): F[Unit]
Returns the given argument if
cond
istrue
, otherwise, unit lifted into F.Returns the given argument if
cond
istrue
, otherwise, unit lifted into F.- Definition Classes
- Applicative
-
def
whileM[G[_], A](p: F[Boolean], body: ⇒ F[A])(implicit G: MonadPlus[G]): F[G[A]]
Execute an action repeatedly as long as the given
Boolean
expression returnstrue
.Execute an action repeatedly as long as the given
Boolean
expression returnstrue
. The condition is evalated before the loop body. Collects the results into an arbitraryMonadPlus
value, such as aList
. -
def
whileM_[A](p: F[Boolean], body: ⇒ F[A]): F[Unit]
Execute an action repeatedly as long as the given
Boolean
expression returnstrue
.Execute an action repeatedly as long as the given
Boolean
expression returnstrue
. The condition is evaluated before the loop body. Discards results. -
def
widen[A, B](fa: F[A])(implicit ev: <~<[A, B]): F[B]
Functors are covariant by nature, so we can treat an
F[A]
as anF[B]
ifA
is a subtype ofB
.Functors are covariant by nature, so we can treat an
F[A]
as anF[B]
ifA
is a subtype ofB
.- Definition Classes
- Functor
-
final
def
xderiving0[Z](z: ⇒ Z): F[Z]
- Definition Classes
- InvariantApplicative
-
final
def
xderiving1[Z, A1](f: (A1) ⇒ Z, g: (Z) ⇒ A1)(implicit a1: F[A1]): F[Z]
- Definition Classes
- InvariantApplicative
-
final
def
xderiving2[Z, A1, A2](f: (A1, A2) ⇒ Z, g: (Z) ⇒ (A1, A2))(implicit a1: F[A1], a2: F[A2]): F[Z]
- Definition Classes
- InvariantApplicative
-
final
def
xderiving3[Z, A1, A2, A3](f: (A1, A2, A3) ⇒ Z, g: (Z) ⇒ (A1, A2, A3))(implicit a1: F[A1], a2: F[A2], a3: F[A3]): F[Z]
- Definition Classes
- InvariantApplicative
-
final
def
xderiving4[Z, A1, A2, A3, A4](f: (A1, A2, A3, A4) ⇒ Z, g: (Z) ⇒ (A1, A2, A3, A4))(implicit a1: F[A1], a2: F[A2], a3: F[A3], a4: F[A4]): F[Z]
- Definition Classes
- InvariantApplicative
-
def
xmap[A, B](fa: F[A], f: (A) ⇒ B, g: (B) ⇒ A): F[B]
Converts
ma
to a value of typeF[B]
using the provided functionsf
andg
.Converts
ma
to a value of typeF[B]
using the provided functionsf
andg
.- Definition Classes
- Functor → InvariantFunctor
-
def
xmapb[A, B](ma: F[A])(b: Bijection[A, B]): F[B]
Converts
ma
to a value of typeF[B]
using the provided bijection.Converts
ma
to a value of typeF[B]
using the provided bijection.- Definition Classes
- InvariantFunctor
-
def
xmapi[A, B](ma: F[A])(iso: Isomorphism.<=>[A, B]): F[B]
Converts
ma
to a value of typeF[B]
using the provided isomorphism.Converts
ma
to a value of typeF[B]
using the provided isomorphism.- Definition Classes
- InvariantFunctor
-
def
xproduct0[Z](z: ⇒ Z): F[Z]
- Definition Classes
- Applicative → InvariantApplicative
-
def
xproduct1[Z, A1](a1: ⇒ F[A1])(f: (A1) ⇒ Z, g: (Z) ⇒ A1): F[Z]
- Definition Classes
- Applicative → InvariantApplicative
-
def
xproduct2[Z, A1, A2](a1: ⇒ F[A1], a2: ⇒ F[A2])(f: (A1, A2) ⇒ Z, g: (Z) ⇒ (A1, A2)): F[Z]
- Definition Classes
- Applicative → InvariantApplicative
-
def
xproduct3[Z, A1, A2, A3](a1: ⇒ F[A1], a2: ⇒ F[A2], a3: ⇒ F[A3])(f: (A1, A2, A3) ⇒ Z, g: (Z) ⇒ (A1, A2, A3)): F[Z]
- Definition Classes
- Applicative → InvariantApplicative
-
def
xproduct4[Z, A1, A2, A3, A4](a1: ⇒ F[A1], a2: ⇒ F[A2], a3: ⇒ F[A3], a4: ⇒ F[A4])(f: (A1, A2, A3, A4) ⇒ Z, g: (Z) ⇒ (A1, A2, A3, A4)): F[Z]
- Definition Classes
- Applicative → InvariantApplicative