object Ran
- Source
- Kan.scala
- Alphabetic
- By Inheritance
- Ran
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- def adjointToRan[F[_], G[_], A](f: F[A])(implicit A: Adjunction[F, G]): Ran[G, Id.Id, A]
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
- def composedAdjointToRan[F[_], G[_], H[_], A](h: H[F[A]])(implicit A: Adjunction[F, G], H: Functor[H]): Ran[G, H, A]
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
def
fromRan[G[_], H[_], K[_], B](k: K[G[B]])(s: ~>[K, [γ$2$]Ran[G, H, γ$2$]]): H[B]
toRan
andfromRan
witness an adjunction fromCompose[G,_,_]
toRan[G,_,_]
. -
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
gran[G[_], H[_], A](r: Ran[G, H, G[A]]): H[A]
This is the natural transformation that defines a right Kan extension.
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
- implicit def ranFunctor[G[_], H[_]]: Functor[[γ$0$]Ran[G, H, γ$0$]]
- def ranToAdjoint[F[_], G[_], A](r: Ran[G, Id.Id, A])(implicit A: Adjunction[F, G]): F[A]
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toRan[G[_], H[_], K[_], B](k: K[B])(s: ~>[[α]K[G[α]], H])(implicit arg0: Functor[K]): Ran[G, H, B]
The universal property of a right Kan extension.
The universal property of a right Kan extension. The functor
Ran[G,H,_]
and the natural transformationgran[G,H,_]
are couniversal in the sense that for any functorK
and a natural transformations
fromK[G[_]]
toH
, a unique natural transformationtoRan
exists fromK
toRan[G,H,_]
such that for allk
,gran(toRan(k)) = s(k)
. -
def
toString(): String
- Definition Classes
- AnyRef → Any
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )