Packages

type Sink[A, B] = Free[[β$5$](⇒ A) ⇒ β$5$, B]

A computation that accepts values of type A, eventually resulting in a value of type B. Note the similarity to an scalaz.iteratee.Iteratee.

Source
Free.scala
Linear Supertypes
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. Sink
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. final def >>=[B](f: (A) ⇒ Free[S, B]): Free[S, B]

    Alias for flatMap

    Alias for flatMap

    Definition Classes
    Free
  5. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  6. final def bounce(f: (S[Free[S, A]]) ⇒ Free[S, A])(implicit S: Functor[S]): Free[S, A]

    Runs a single step, using a function that extracts the resumption from its suspension functor.

    Runs a single step, using a function that extracts the resumption from its suspension functor.

    Definition Classes
    Free
  7. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  8. def collect[B](implicit ev: ===[Free[S, A], Source[B, A]]): (Vector[B], A)

    Runs a Source all the way to the end, tail-recursively, collecting the produced values.

    Runs a Source all the way to the end, tail-recursively, collecting the produced values.

    Definition Classes
    Free
  9. def drain[E, B](source: Source[E, B])(implicit ev: ===[Free[S, A], Sink[E, A]]): (A, B)

    Feed the given source to this Sink.

    Feed the given source to this Sink.

    Definition Classes
    Free
  10. def drive[E, B](sink: Sink[Option[E], B])(implicit ev: ===[Free[S, A], Source[E, A]]): (A, B)

    Drive this Source with the given Sink.

    Drive this Source with the given Sink.

    Definition Classes
    Free
  11. def duplicateF: Free[[β$14$]Free[S, β$14$], A]

    Duplication in Free as a comonad in the endofunctor category.

    Duplication in Free as a comonad in the endofunctor category.

    Definition Classes
    Free
  12. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  13. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  14. def extendF[T[_]](f: ~>[[β$17$]Free[S, β$17$], T]): Free[T, A]

    Extension in Free as a comonad in the endofunctor category.

    Extension in Free as a comonad in the endofunctor category.

    Definition Classes
    Free
  15. def extractF(implicit S: Monad[S]): S[A]

    Extraction from Free as a comonad in the endofunctor category.

    Extraction from Free as a comonad in the endofunctor category.

    Definition Classes
    Free
  16. def feed[E](ss: Stream[E])(implicit ev: ===[Free[S, A], Sink[E, A]]): A

    Feed the given stream to this Source.

    Feed the given stream to this Source.

    Definition Classes
    Free
  17. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  18. final def flatMap[B](f: (A) ⇒ Free[S, B]): Free[S, B]

    Binds the given continuation to the result of this computation.

    Binds the given continuation to the result of this computation.

    Definition Classes
    Free
  19. final def flatMapSuspension[T[_]](f: ~>[S, [β$8$]Free[T, β$8$]]): Free[T, A]

    Substitutes a free monad over the given functor into the suspension functor of this program.

    Substitutes a free monad over the given functor into the suspension functor of this program. Free is a monad in an endofunctor category and this is its monadic bind.

    Definition Classes
    Free
  20. final def fold[B](r: (A) ⇒ B, s: (S[Free[S, A]]) ⇒ B)(implicit S: Functor[S]): B

    Catamorphism.

    Catamorphism. Run the first given function if Return, otherwise, the second given function.

    Definition Classes
    Free
  21. final def foldMap[M[_]](f: ~>[S, M])(implicit M: Monad[M]): M[A]

    Catamorphism for Free.

    Catamorphism for Free. Runs to completion, mapping the suspension with the given transformation at each step and accumulating into the monad M.

    Definition Classes
    Free
  22. final def foldMapRec[M[_]](f: ~>[S, M])(implicit M: Applicative[M], B: BindRec[M]): M[A]
    Definition Classes
    Free
  23. final def foldRight[G[_]](z: ~>[Id.Id, G])(f: ~>[[α]S[G[α]], G])(implicit S: Functor[S]): G[A]

    Folds this free recursion to the right using the given natural transformations.

    Folds this free recursion to the right using the given natural transformations.

    Definition Classes
    Free
  24. final def foldRun[B](b: B)(f: ~>[[α](B, S[α]), [β$10$](B, β$10$)]): (B, A)

    Runs to completion, allowing the resumption function to thread an arbitrary state of type B.

    Runs to completion, allowing the resumption function to thread an arbitrary state of type B.

    Definition Classes
    Free
    Annotations
    @tailrec()
  25. final def foldRunM[M[_], B](b: B)(f: ~>[[α](B, S[α]), [α]M[(B, α)]])(implicit M0: Applicative[M], M1: BindRec[M]): M[(B, A)]

    Variant of foldRun that allows to interleave effect M at each step.

    Variant of foldRun that allows to interleave effect M at each step.

    Definition Classes
    Free
  26. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  27. final def go(f: (S[Free[S, A]]) ⇒ Free[S, A])(implicit S: Functor[S]): A

    Runs to completion, using a function that extracts the resumption from its suspension functor.

    Runs to completion, using a function that extracts the resumption from its suspension functor.

    Definition Classes
    Free
  28. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  29. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  30. final def map[B](f: (A) ⇒ B): Free[S, B]
    Definition Classes
    Free
  31. final def mapFirstSuspension(f: ~>[S, S]): Free[S, A]

    Modifies the first suspension with the given natural transformation.

    Modifies the first suspension with the given natural transformation.

    Definition Classes
    Free
  32. final def mapSuspension[T[_]](f: ~>[S, T]): Free[T, A]

    Changes the suspension functor by the given natural transformation.

    Changes the suspension functor by the given natural transformation.

    Definition Classes
    Free
  33. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  34. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  35. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  36. final def resume(implicit S: Functor[S]): \/[S[Free[S, A]], A]

    Evaluates a single layer of the free monad *

    Evaluates a single layer of the free monad *

    Definition Classes
    Free
  37. final def resumeC: \/[Coyoneda[S, Free[S, A]], A]

    Evaluates a single layer of the free monad *

    Evaluates a single layer of the free monad *

    Definition Classes
    Free
    Annotations
    @tailrec()
  38. final def run(implicit ev: ===[Free[S, A], Trampoline[A]]): A

    Runs a trampoline all the way to the end, tail-recursively.

    Runs a trampoline all the way to the end, tail-recursively.

    Definition Classes
    Free
  39. final def runM[M[_]](f: (S[Free[S, A]]) ⇒ M[Free[S, A]])(implicit S: Functor[S], M: Monad[M]): M[A]

    Runs to completion, using a function that maps the resumption from S to a monad M.

    Runs to completion, using a function that maps the resumption from S to a monad M.

    Definition Classes
    Free
    Since

    7.0.1

  40. final def runRecM[M[_]](f: (S[Free[S, A]]) ⇒ M[Free[S, A]])(implicit S: Functor[S], M: Applicative[M], B: BindRec[M]): M[A]

    Run Free using constant stack.

    Run Free using constant stack.

    Definition Classes
    Free
  41. final def step: Free[S, A]

    Evaluate one layer in the free monad, re-associating any left-nested binds to the right and pulling the first suspension to the top.

    Evaluate one layer in the free monad, re-associating any left-nested binds to the right and pulling the first suspension to the top.

    Definition Classes
    Free
    Annotations
    @tailrec()
  42. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  43. def toFreeT: FreeT[S, Id.Id, A]
    Definition Classes
    Free
  44. def toString(): String
    Definition Classes
    AnyRef → Any
  45. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  46. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  47. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  48. final def zap[G[_], B](fs: Cofree[G, (A) ⇒ B])(implicit d: Zap[S, G]): B

    Applies a function in a comonad to the corresponding value in this monad, annihilating both.

    Applies a function in a comonad to the corresponding value in this monad, annihilating both.

    Definition Classes
    Free
  49. final def zapWith[G[_], B, C](bs: Cofree[G, B])(f: (A, B) ⇒ C)(implicit d: Zap[S, G]): C

    Applies a function f to a value in this monad and a corresponding value in the dual comonad, annihilating both.

    Applies a function f to a value in this monad and a corresponding value in the dual comonad, annihilating both.

    Definition Classes
    Free
  50. final def zipWith[B, C](tb: Free[S, B])(f: (A, B) ⇒ C): Free[S, C]

    Interleave this computation with another, combining the results with the given function.

    Interleave this computation with another, combining the results with the given function.

    Definition Classes
    Free

Inherited from AnyRef

Inherited from Any

Ungrouped