trait SemigroupApply extends Apply[[α]F]
- Attributes
- protected[this]
- Source
- Semigroup.scala
- Alphabetic
- By Inheritance
- SemigroupApply
- Apply
- Functor
- InvariantFunctor
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Type Members
-
trait
ApplyLaw extends FunctorLaw
- Definition Classes
- Apply
-
trait
FlippedApply extends Apply[F]
- Attributes
- protected[this]
- Definition Classes
- Apply
-
trait
FunctorLaw extends InvariantFunctorLaw
- Definition Classes
- Functor
-
trait
InvariantFunctorLaw extends AnyRef
- Definition Classes
- InvariantFunctor
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
ap[A, B](fa: ⇒ F)(f: ⇒ F): F
Sequence
f
, thenfa
, combining their results by function application.Sequence
f
, thenfa
, combining their results by function application.NB: with respect to
apply2
and all other combinators, as well as scalaz.Bind, thef
action appears to the *left*. Sof
should be the "first"F
-action to perform. This is in accordance with all other implementations of this typeclass in common use, which are "function first".- Definition Classes
- SemigroupApply → Apply
-
def
ap2[A, B, C](fa: ⇒ F, fb: ⇒ F)(f: F): F
- Definition Classes
- Apply
-
def
ap3[A, B, C, D](fa: ⇒ F, fb: ⇒ F, fc: ⇒ F)(f: F): F
- Definition Classes
- Apply
-
def
ap4[A, B, C, D, E](fa: ⇒ F, fb: ⇒ F, fc: ⇒ F, fd: ⇒ F)(f: F): F
- Definition Classes
- Apply
-
def
ap5[A, B, C, D, E, R](fa: ⇒ F, fb: ⇒ F, fc: ⇒ F, fd: ⇒ F, fe: ⇒ F)(f: F): F
- Definition Classes
- Apply
-
def
ap6[A, B, C, D, E, FF, R](fa: ⇒ F, fb: ⇒ F, fc: ⇒ F, fd: ⇒ F, fe: ⇒ F, ff: ⇒ F)(f: F): F
- Definition Classes
- Apply
-
def
ap7[A, B, C, D, E, FF, G, R](fa: ⇒ F, fb: ⇒ F, fc: ⇒ F, fd: ⇒ F, fe: ⇒ F, ff: ⇒ F, fg: ⇒ F)(f: F): F
- Definition Classes
- Apply
-
def
ap8[A, B, C, D, E, FF, G, H, R](fa: ⇒ F, fb: ⇒ F, fc: ⇒ F, fd: ⇒ F, fe: ⇒ F, ff: ⇒ F, fg: ⇒ F, fh: ⇒ F)(f: F): F
- Definition Classes
- Apply
-
def
apF[A, B](f: ⇒ F): (F) ⇒ F
Flipped variant of
ap
.Flipped variant of
ap
.- Definition Classes
- Apply
-
def
apply[A, B](fa: F)(f: (A) ⇒ B): F
Alias for
map
.Alias for
map
.- Definition Classes
- Functor
-
def
apply10[A, B, C, D, E, FF, G, H, I, J, R](fa: ⇒ F, fb: ⇒ F, fc: ⇒ F, fd: ⇒ F, fe: ⇒ F, ff: ⇒ F, fg: ⇒ F, fh: ⇒ F, fi: ⇒ F, fj: ⇒ F)(f: (A, B, C, D, E, FF, G, H, I, J) ⇒ R): F
- Definition Classes
- Apply
-
def
apply11[A, B, C, D, E, FF, G, H, I, J, K, R](fa: ⇒ F, fb: ⇒ F, fc: ⇒ F, fd: ⇒ F, fe: ⇒ F, ff: ⇒ F, fg: ⇒ F, fh: ⇒ F, fi: ⇒ F, fj: ⇒ F, fk: ⇒ F)(f: (A, B, C, D, E, FF, G, H, I, J, K) ⇒ R): F
- Definition Classes
- Apply
-
def
apply12[A, B, C, D, E, FF, G, H, I, J, K, L, R](fa: ⇒ F, fb: ⇒ F, fc: ⇒ F, fd: ⇒ F, fe: ⇒ F, ff: ⇒ F, fg: ⇒ F, fh: ⇒ F, fi: ⇒ F, fj: ⇒ F, fk: ⇒ F, fl: ⇒ F)(f: (A, B, C, D, E, FF, G, H, I, J, K, L) ⇒ R): F
- Definition Classes
- Apply
-
def
apply2[A, B, C](fa: ⇒ F, fb: ⇒ F)(f: (A, B) ⇒ C): F
- Definition Classes
- Apply
-
def
apply3[A, B, C, D](fa: ⇒ F, fb: ⇒ F, fc: ⇒ F)(f: (A, B, C) ⇒ D): F
- Definition Classes
- Apply
-
def
apply4[A, B, C, D, E](fa: ⇒ F, fb: ⇒ F, fc: ⇒ F, fd: ⇒ F)(f: (A, B, C, D) ⇒ E): F
- Definition Classes
- Apply
-
def
apply5[A, B, C, D, E, R](fa: ⇒ F, fb: ⇒ F, fc: ⇒ F, fd: ⇒ F, fe: ⇒ F)(f: (A, B, C, D, E) ⇒ R): F
- Definition Classes
- Apply
-
def
apply6[A, B, C, D, E, FF, R](fa: ⇒ F, fb: ⇒ F, fc: ⇒ F, fd: ⇒ F, fe: ⇒ F, ff: ⇒ F)(f: (A, B, C, D, E, FF) ⇒ R): F
- Definition Classes
- Apply
-
def
apply7[A, B, C, D, E, FF, G, R](fa: ⇒ F, fb: ⇒ F, fc: ⇒ F, fd: ⇒ F, fe: ⇒ F, ff: ⇒ F, fg: ⇒ F)(f: (A, B, C, D, E, FF, G) ⇒ R): F
- Definition Classes
- Apply
-
def
apply8[A, B, C, D, E, FF, G, H, R](fa: ⇒ F, fb: ⇒ F, fc: ⇒ F, fd: ⇒ F, fe: ⇒ F, ff: ⇒ F, fg: ⇒ F, fh: ⇒ F)(f: (A, B, C, D, E, FF, G, H) ⇒ R): F
- Definition Classes
- Apply
-
def
apply9[A, B, C, D, E, FF, G, H, I, R](fa: ⇒ F, fb: ⇒ F, fc: ⇒ F, fd: ⇒ F, fe: ⇒ F, ff: ⇒ F, fg: ⇒ F, fh: ⇒ F, fi: ⇒ F)(f: (A, B, C, D, E, FF, G, H, I) ⇒ R): F
- Definition Classes
- Apply
-
def
applyApplicative: Applicative[[α]\/[F, α]]
Add a unit to any Apply to form an Applicative.
Add a unit to any Apply to form an Applicative.
- Definition Classes
- Apply
-
def
applyLaw: ApplyLaw
- Definition Classes
- Apply
-
val
applySyntax: ApplySyntax[[α]F]
- Definition Classes
- Apply
-
final
def
applying1[Z, A1](f: (A1) ⇒ Z)(implicit a1: F): F
- Definition Classes
- Apply
-
final
def
applying2[Z, A1, A2](f: (A1, A2) ⇒ Z)(implicit a1: F, a2: F): F
- Definition Classes
- Apply
-
final
def
applying3[Z, A1, A2, A3](f: (A1, A2, A3) ⇒ Z)(implicit a1: F, a2: F, a3: F): F
- Definition Classes
- Apply
-
final
def
applying4[Z, A1, A2, A3, A4](f: (A1, A2, A3, A4) ⇒ Z)(implicit a1: F, a2: F, a3: F, a4: F): F
- Definition Classes
- Apply
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
bicompose[G[_, _]](implicit arg0: Bifunctor[G]): Bifunctor[[α, β]F]
The composition of Functor
F
and BifunctorG
,[x, y]F[G[x, y]]
, is a BifunctorThe composition of Functor
F
and BifunctorG
,[x, y]F[G[x, y]]
, is a Bifunctor- Definition Classes
- Functor
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
def
compose[G[_]](implicit G0: Apply[G]): Apply[[α]F]
The composition of Applys
F
andG
,[x]F[G[x]]
, is a ApplyThe composition of Applys
F
andG
,[x]F[G[x]]
, is a Apply- Definition Classes
- Apply
-
def
compose[G[_]](implicit G0: Functor[G]): Functor[[α]F]
The composition of Functors
F
andG
,[x]F[G[x]]
, is a FunctorThe composition of Functors
F
andG
,[x]F[G[x]]
, is a Functor- Definition Classes
- Functor
-
def
counzip[A, B](a: \/[F, F]): F
- Definition Classes
- Functor
-
def
discardLeft[A, B](fa: ⇒ F, fb: ⇒ F): F
Combine
fa
andfb
according toApply[F]
with a function that discards theA
(s)Combine
fa
andfb
according toApply[F]
with a function that discards theA
(s)- Definition Classes
- Apply
-
def
discardRight[A, B](fa: ⇒ F, fb: ⇒ F): F
Combine
fa
andfb
according toApply[F]
with a function that discards theB
(s)Combine
fa
andfb
according toApply[F]
with a function that discards theB
(s)- Definition Classes
- Apply
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
def
flip: Apply[[α]F]
An
Apply
forF
in which effects happen in the opposite order.An
Apply
forF
in which effects happen in the opposite order.- Definition Classes
- Apply
-
def
forever[A, B](fa: F): F
Repeats an applicative action infinitely
Repeats an applicative action infinitely
- Definition Classes
- Apply
-
def
fpair[A](fa: F): F
Twin all
A
s infa
.Twin all
A
s infa
.- Definition Classes
- Functor
-
def
fproduct[A, B](fa: F)(f: (A) ⇒ B): F
Pair all
A
s infa
with the result of function application.Pair all
A
s infa
with the result of function application.- Definition Classes
- Functor
-
def
functorLaw: FunctorLaw
- Definition Classes
- Functor
-
val
functorSyntax: FunctorSyntax[[α]F]
- Definition Classes
- Functor
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
icompose[G[_]](implicit G0: Contravariant[G]): Contravariant[[α]F]
The composition of Functor F and Contravariant G,
[x]F[G[x]]
, is contravariant.The composition of Functor F and Contravariant G,
[x]F[G[x]]
, is contravariant.- Definition Classes
- Functor
-
def
invariantFunctorLaw: InvariantFunctorLaw
- Definition Classes
- InvariantFunctor
-
val
invariantFunctorSyntax: InvariantFunctorSyntax[[α]F]
- Definition Classes
- InvariantFunctor
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
def
lift[A, B](f: (A) ⇒ B): (F) ⇒ F
Lift
f
intoF
.Lift
f
intoF
.- Definition Classes
- Functor
-
def
lift10[A, B, C, D, E, FF, G, H, I, J, R](f: (A, B, C, D, E, FF, G, H, I, J) ⇒ R): (F, F, F, F, F, F, F, F, F, F) ⇒ F
- Definition Classes
- Apply
-
def
lift11[A, B, C, D, E, FF, G, H, I, J, K, R](f: (A, B, C, D, E, FF, G, H, I, J, K) ⇒ R): (F, F, F, F, F, F, F, F, F, F, F) ⇒ F
- Definition Classes
- Apply
-
def
lift12[A, B, C, D, E, FF, G, H, I, J, K, L, R](f: (A, B, C, D, E, FF, G, H, I, J, K, L) ⇒ R): (F, F, F, F, F, F, F, F, F, F, F, F) ⇒ F
- Definition Classes
- Apply
-
def
lift2[A, B, C](f: (A, B) ⇒ C): (F, F) ⇒ F
- Definition Classes
- Apply
-
def
lift3[A, B, C, D](f: (A, B, C) ⇒ D): (F, F, F) ⇒ F
- Definition Classes
- Apply
-
def
lift4[A, B, C, D, E](f: (A, B, C, D) ⇒ E): (F, F, F, F) ⇒ F
- Definition Classes
- Apply
-
def
lift5[A, B, C, D, E, R](f: (A, B, C, D, E) ⇒ R): (F, F, F, F, F) ⇒ F
- Definition Classes
- Apply
-
def
lift6[A, B, C, D, E, FF, R](f: (A, B, C, D, E, FF) ⇒ R): (F, F, F, F, F, F) ⇒ F
- Definition Classes
- Apply
-
def
lift7[A, B, C, D, E, FF, G, R](f: (A, B, C, D, E, FF, G) ⇒ R): (F, F, F, F, F, F, F) ⇒ F
- Definition Classes
- Apply
-
def
lift8[A, B, C, D, E, FF, G, H, R](f: (A, B, C, D, E, FF, G, H) ⇒ R): (F, F, F, F, F, F, F, F) ⇒ F
- Definition Classes
- Apply
-
def
lift9[A, B, C, D, E, FF, G, H, I, R](f: (A, B, C, D, E, FF, G, H, I) ⇒ R): (F, F, F, F, F, F, F, F, F) ⇒ F
- Definition Classes
- Apply
-
def
liftReducer[A, B](implicit r: Reducer[A, B]): Reducer[F, F]
- Definition Classes
- Apply
-
def
map[A, B](fa: F)(f: (A) ⇒ B): F
Lift
f
intoF
and apply toF[A]
.Lift
f
intoF
and apply toF[A]
.- Definition Classes
- SemigroupApply → Functor
-
def
mapply[A, B](a: A)(f: F): F
Lift
apply(a)
, and apply the result tof
.Lift
apply(a)
, and apply the result tof
.- Definition Classes
- Functor
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
product[G[_]](implicit G0: Apply[G]): Apply[[α](F, G[α])]
The product of Applys
F
andG
,[x](F[x], G[x]])
, is a ApplyThe product of Applys
F
andG
,[x](F[x], G[x]])
, is a Apply- Definition Classes
- Apply
-
def
product[G[_]](implicit G0: Functor[G]): Functor[[α](F, G[α])]
The product of Functors
F
andG
,[x](F[x], G[x]])
, is a FunctorThe product of Functors
F
andG
,[x](F[x], G[x]])
, is a Functor- Definition Classes
- Functor
-
def
sequence1[A, G[_]](as: G[F])(implicit arg0: Traverse1[G]): F
- Definition Classes
- Apply
-
def
strengthL[A, B](a: A, f: F): F
Inject
a
to the left ofB
s inf
.Inject
a
to the left ofB
s inf
.- Definition Classes
- Functor
-
def
strengthR[A, B](f: F, b: B): F
Inject
b
to the right ofA
s inf
.Inject
b
to the right ofA
s inf
.- Definition Classes
- Functor
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
def
traverse1[A, G[_], B](value: G[A])(f: (A) ⇒ F)(implicit G: Traverse1[G]): F
- Definition Classes
- Apply
-
def
tuple2[A, B](fa: ⇒ F, fb: ⇒ F): F
- Definition Classes
- Apply
-
def
tuple3[A, B, C](fa: ⇒ F, fb: ⇒ F, fc: ⇒ F): F
- Definition Classes
- Apply
-
def
tuple4[A, B, C, D](fa: ⇒ F, fb: ⇒ F, fc: ⇒ F, fd: ⇒ F): F
- Definition Classes
- Apply
-
def
tuple5[A, B, C, D, E](fa: ⇒ F, fb: ⇒ F, fc: ⇒ F, fd: ⇒ F, fe: ⇒ F): F
- Definition Classes
- Apply
-
def
unfoldrOpt[S, A, B](seed: S)(f: (S) ⇒ Maybe[(F, S)])(implicit R: Reducer[A, B]): Maybe[F]
Unfold
seed
to the right and combine effects left-to-right, using the given Reducer to combine values. -
def
void[A](fa: F): F
Empty
fa
of meaningful pure values, preserving its structure.Empty
fa
of meaningful pure values, preserving its structure.- Definition Classes
- Functor
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
def
widen[A, B](fa: F)(implicit ev: <~<[A, B]): F
Functors are covariant by nature, so we can treat an
F[A]
as anF[B]
ifA
is a subtype ofB
.Functors are covariant by nature, so we can treat an
F[A]
as anF[B]
ifA
is a subtype ofB
.- Definition Classes
- Functor
-
def
xmap[A, B](fa: F, f: (A) ⇒ B, g: (B) ⇒ A): F
Converts
ma
to a value of typeF[B]
using the provided functionsf
andg
.Converts
ma
to a value of typeF[B]
using the provided functionsf
andg
.- Definition Classes
- Functor → InvariantFunctor
-
def
xmapb[A, B](ma: F)(b: Bijection[A, B]): F
Converts
ma
to a value of typeF[B]
using the provided bijection.Converts
ma
to a value of typeF[B]
using the provided bijection.- Definition Classes
- InvariantFunctor
-
def
xmapi[A, B](ma: F)(iso: Isomorphism.<=>[A, B]): F
Converts
ma
to a value of typeF[B]
using the provided isomorphism.Converts
ma
to a value of typeF[B]
using the provided isomorphism.- Definition Classes
- InvariantFunctor