Packages

t

scalaz

IsomorphismBitraverse

trait IsomorphismBitraverse[F[_, _], G[_, _]] extends Bitraverse[F] with IsomorphismBifunctor[F, G] with IsomorphismBifoldable[F, G]

Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. IsomorphismBitraverse
  2. IsomorphismBifoldable
  3. IsomorphismBifunctor
  4. Bitraverse
  5. Bifoldable
  6. Bifunctor
  7. BifunctorParent
  8. AnyRef
  9. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Type Members

  1. trait BifoldableLaw extends AnyRef
    Definition Classes
    Bifoldable
  2. class Bitraversal[G[_]] extends AnyRef
    Definition Classes
    Bitraverse

Abstract Value Members

  1. implicit abstract def G: Bitraverse[G]
  2. abstract def iso: Isomorphism.<~~>[F, G]
    Definition Classes
    IsomorphismBifunctor

Concrete Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  5. final def biNaturalTrans: ~~>[F, G]
    Attributes
    protected[this]
    Definition Classes
    IsomorphismBitraverseIsomorphismBifoldable
  6. final def bifoldL[A, B, C](fa: F[A, B], z: C)(f: (C) ⇒ (A) ⇒ C)(g: (C) ⇒ (B) ⇒ C): C

    Curried version of bifoldLeft

    Curried version of bifoldLeft

    Definition Classes
    Bifoldable
  7. def bifoldLShape[A, B, C](fa: F[A, B], z: C)(f: (C, A) ⇒ C)(g: (C, B) ⇒ C): (C, F[Unit, Unit])
    Definition Classes
    Bitraverse
  8. final def bifoldLeft[A, B, C](fa: F[A, B], z: C)(f: (C, A) ⇒ C)(g: (C, B) ⇒ C): C

    bifoldRight, but defined to run in the opposite direction.

    bifoldRight, but defined to run in the opposite direction.

    Definition Classes
    IsomorphismBifoldableBifoldable
  9. final def bifoldMap[A, B, M](fab: F[A, B])(f: (A) ⇒ M)(g: (B) ⇒ M)(implicit arg0: Monoid[M]): M

    Accumulate As and Bs

    Accumulate As and Bs

    Definition Classes
    IsomorphismBifoldableBifoldable
  10. def bifoldMap1[A, B, M](fa: F[A, B])(f: (A) ⇒ M)(g: (B) ⇒ M)(implicit F: Semigroup[M]): Option[M]
    Definition Classes
    Bifoldable
  11. final def bifoldR[A, B, C](fa: F[A, B], z: ⇒ C)(f: (A) ⇒ (⇒ C) ⇒ C)(g: (B) ⇒ (⇒ C) ⇒ C): C

    Curried version of bifoldRight

    Curried version of bifoldRight

    Definition Classes
    Bifoldable
  12. final def bifoldRight[A, B, C](fab: F[A, B], z: ⇒ C)(f: (A, ⇒ C) ⇒ C)(g: (B, ⇒ C) ⇒ C): C

    Accumulate to C starting at the "right".

    Accumulate to C starting at the "right". f and g may be interleaved.

    Definition Classes
    IsomorphismBifoldableBifoldable
  13. def bifoldableLaw: BifoldableLaw
    Definition Classes
    Bifoldable
  14. val bifoldableSyntax: BifoldableSyntax[F]
    Definition Classes
    Bifoldable
  15. val bifunctorSyntax: BifunctorSyntax[F]
    Definition Classes
    Bifunctor
  16. def bimap[A, B, C, D](fab: F[A, B])(f: (A) ⇒ C, g: (B) ⇒ D): F[C, D]

    map over both type parameters.

    map over both type parameters.

    Definition Classes
    IsomorphismBifunctorBifunctor
  17. def bisequence[G[_], A, B](x: F[G[A], G[B]])(implicit arg0: Applicative[G]): G[F[A, B]]
    Definition Classes
    Bitraverse
  18. def bitraversal[G[_]](implicit arg0: Applicative[G]): Bitraversal[G]
    Definition Classes
    Bitraverse
  19. def bitraversalS[S]: Bitraversal[[β$2$]IndexedStateT[[X]X, S, S, β$2$]]
    Definition Classes
    Bitraverse
  20. def bitraverse[G[_], A, B, C, D](fa: F[A, B])(f: (A) ⇒ G[C])(g: (B) ⇒ G[D])(implicit arg0: Applicative[G]): G[F[C, D]]
    Definition Classes
    Bitraverse
  21. def bitraverseF[G[_], A, B, C, D](f: (A) ⇒ G[C], g: (B) ⇒ G[D])(implicit arg0: Applicative[G]): (F[A, B]) ⇒ G[F[C, D]]

    Flipped bitraverse.

    Flipped bitraverse.

    Definition Classes
    Bitraverse
  22. def bitraverseImpl[H[_], A, B, C, D](fab: F[A, B])(f: (A) ⇒ H[C], g: (B) ⇒ H[D])(implicit arg0: Applicative[H]): H[F[C, D]]

    Collect Gs while applying f and g in some order.

    Collect Gs while applying f and g in some order.

    Definition Classes
    IsomorphismBitraverseBitraverse
  23. def bitraverseKTrampoline[S, G[_], A, B, C, D](fa: F[A, B])(f: (A) ⇒ Kleisli[G, S, C])(g: (B) ⇒ Kleisli[G, S, D])(implicit arg0: Applicative[G]): Kleisli[G, S, F[C, D]]

    Bitraverse fa with a Kleisli[G, S, C] and Kleisli[G, S, D], internally using a Trampoline to avoid stack overflow.

    Bitraverse fa with a Kleisli[G, S, C] and Kleisli[G, S, D], internally using a Trampoline to avoid stack overflow.

    Definition Classes
    Bitraverse
  24. def bitraverseS[S, A, B, C, D](fa: F[A, B])(f: (A) ⇒ State[S, C])(g: (B) ⇒ State[S, D]): State[S, F[C, D]]
    Definition Classes
    Bitraverse
  25. val bitraverseSyntax: BitraverseSyntax[F]
    Definition Classes
    Bitraverse
  26. def clone(): AnyRef
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @native() @throws(classOf[java.lang.CloneNotSupportedException])
  27. def compose[G[_, _]](implicit G0: Bitraverse[G]): Bitraverse[[α, β]F[G[α, β], G[α, β]]]

    The composition of Bitraverses F and G, [x,y]F[G[x,y],G[x,y]], is a Bitraverse

    The composition of Bitraverses F and G, [x,y]F[G[x,y],G[x,y]], is a Bitraverse

    Definition Classes
    Bitraverse
  28. def compose[G[_, _]](implicit G0: Bifoldable[G]): Bifoldable[[α, β]F[G[α, β], G[α, β]]]

    The composition of Bifoldables F and G, [x,y]F[G[x,y],G[x,y]], is a Bifoldable

    The composition of Bifoldables F and G, [x,y]F[G[x,y],G[x,y]], is a Bifoldable

    Definition Classes
    Bifoldable
  29. def compose[G[_, _]](implicit G0: Bifunctor[G]): Bifunctor[[α, β]F[G[α, β], G[α, β]]]

    The composition of Bifunctors F and G, [x,y]F[G[x,y],G[x,y]], is a Bifunctor

    The composition of Bifunctors F and G, [x,y]F[G[x,y],G[x,y]], is a Bifunctor

    Definition Classes
    Bifunctor
  30. def embed[G[_], H[_]](implicit G0: Traverse[G], H0: Traverse[H]): Bitraverse[[α, β]F[G[α], H[β]]]

    Embed a Traverse on each side of this Bitraverse .

    Embed a Traverse on each side of this Bitraverse .

    Definition Classes
    Bitraverse
  31. def embed[G[_], H[_]](implicit G0: Foldable[G], H0: Foldable[H]): Bifoldable[[α, β]F[G[α], H[β]]]

    Embed one Foldable at each side of this Bifoldable

    Embed one Foldable at each side of this Bifoldable

    Definition Classes
    Bifoldable
  32. def embed[G[_], H[_]](implicit G0: Functor[G], H0: Functor[H]): Bifunctor[[α, β]F[G[α], H[β]]]

    Embed two Functors , one on each side

    Embed two Functors , one on each side

    Definition Classes
    Bifunctor
  33. def embedLeft[G[_]](implicit G0: Traverse[G]): Bitraverse[[α, β]F[G[α], β]]

    Embed a Traverse on the left side of this Bitraverse .

    Embed a Traverse on the left side of this Bitraverse .

    Definition Classes
    Bitraverse
  34. def embedLeft[G[_]](implicit G0: Foldable[G]): Bifoldable[[α, β]F[G[α], β]]

    Embed one Foldable to the left of this Bifoldable .

    Embed one Foldable to the left of this Bifoldable .

    Definition Classes
    Bifoldable
  35. def embedLeft[G[_]](implicit G0: Functor[G]): Bifunctor[[α, β]F[G[α], β]]

    Embed one Functor to the left

    Embed one Functor to the left

    Definition Classes
    Bifunctor
  36. def embedRight[H[_]](implicit H0: Traverse[H]): Bitraverse[[α, β]F[α, H[β]]]

    Embed a Traverse on the right side of this Bitraverse .

    Embed a Traverse on the right side of this Bitraverse .

    Definition Classes
    Bitraverse
  37. def embedRight[H[_]](implicit H0: Foldable[H]): Bifoldable[[α, β]F[α, H[β]]]

    Embed one Foldable to the right of this Bifoldable .

    Embed one Foldable to the right of this Bifoldable .

    Definition Classes
    Bifoldable
  38. def embedRight[H[_]](implicit H0: Functor[H]): Bifunctor[[α, β]F[α, H[β]]]

    Embed one Functor to the right

    Embed one Functor to the right

    Definition Classes
    Bifunctor
  39. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  40. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  41. def finalize(): Unit
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.Throwable])
  42. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  43. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  44. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  45. def leftFoldable[X]: Foldable[[α$0$]F[α$0$, X]]

    Extract the Foldable on the first parameter.

    Extract the Foldable on the first parameter.

    Definition Classes
    Bifoldable
  46. def leftFunctor[X]: Functor[[α$0$]F[α$0$, X]]

    Extract the Functor on the first param.

    Extract the Functor on the first param.

    Definition Classes
    Bifunctor
  47. def leftMap[A, B, C](fab: F[A, B])(f: (A) ⇒ C): F[C, B]
    Definition Classes
    Bifunctor
  48. def leftTraverse[X]: Traverse[[α$0$]F[α$0$, X]]

    Extract the Traverse on the first param.

    Extract the Traverse on the first param.

    Definition Classes
    Bitraverse
  49. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  50. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  51. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  52. def product[G[_, _]](implicit G0: Bitraverse[G]): Bitraverse[[α, β](F[α, β], G[α, β])]

    The product of Bitraverses F and G, [x,y](F[x,y], G[x,y]), is a Bitraverse

    The product of Bitraverses F and G, [x,y](F[x,y], G[x,y]), is a Bitraverse

    Definition Classes
    Bitraverse
  53. def product[G[_, _]](implicit G0: Bifoldable[G]): Bifoldable[[α, β](F[α, β], G[α, β])]

    The product of Bifoldables F and G, [x,y](F[x,y], G[x,y]), is a Bifoldable

    The product of Bifoldables F and G, [x,y](F[x,y], G[x,y]), is a Bifoldable

    Definition Classes
    Bifoldable
  54. def product[G[_, _]](implicit G0: Bifunctor[G]): Bifunctor[[α, β](F[α, β], G[α, β])]

    The product of Bifunctors F and G, [x,y](F[x,y], G[x,y]), is a Bifunctor

    The product of Bifunctors F and G, [x,y](F[x,y], G[x,y]), is a Bifunctor

    Definition Classes
    Bifunctor
  55. def rightFoldable[X]: Foldable[[β$1$]F[X, β$1$]]

    Extract the Foldable on the second parameter.

    Extract the Foldable on the second parameter.

    Definition Classes
    Bifoldable
  56. def rightFunctor[X]: Functor[[β$1$]F[X, β$1$]]

    Extract the Functor on the second param.

    Extract the Functor on the second param.

    Definition Classes
    Bifunctor
  57. def rightMap[A, B, D](fab: F[A, B])(g: (B) ⇒ D): F[A, D]
    Definition Classes
    Bifunctor
  58. def rightTraverse[X]: Traverse[[β$1$]F[X, β$1$]]

    Extract the Traverse on the second param.

    Extract the Traverse on the second param.

    Definition Classes
    Bitraverse
  59. def runBitraverseS[S, A, B, C, D](fa: F[A, B], s: S)(f: (A) ⇒ State[S, C])(g: (B) ⇒ State[S, D]): (S, F[C, D])
    Definition Classes
    Bitraverse
  60. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  61. def toString(): String
    Definition Classes
    AnyRef → Any
  62. def traverseSTrampoline[S, G[_], A, B, C, D](fa: F[A, B])(f: (A) ⇒ State[S, G[C]])(g: (B) ⇒ State[S, G[D]])(implicit arg0: Applicative[G]): State[S, G[F[C, D]]]

    Bitraverse fa with a State[S, G[C]] and State[S, G[D]], internally using a Trampoline to avoid stack overflow.

    Bitraverse fa with a State[S, G[C]] and State[S, G[D]], internally using a Trampoline to avoid stack overflow.

    Definition Classes
    Bitraverse
  63. def uFoldable: Foldable[[α]F[α, α]]

    Unify the foldable over both params.

    Unify the foldable over both params.

    Definition Classes
    Bifoldable
  64. def uFunctor: Functor[[α]F[α, α]]

    Unify the functor over both params.

    Unify the functor over both params.

    Definition Classes
    Bifunctor
  65. def uTraverse: Traverse[[α]F[α, α]]

    Unify the traverse over both params.

    Unify the traverse over both params.

    Definition Classes
    Bitraverse
  66. def umap[A, B](faa: F[A, A])(f: (A) ⇒ B): F[B, B]
    Definition Classes
    Bifunctor
  67. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.InterruptedException])
  68. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.InterruptedException])
  69. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @throws(classOf[java.lang.InterruptedException])
  70. def widen[A, B, C >: A, D >: B](fab: F[A, B]): F[C, D]

    Bifunctors are covariant by nature

    Bifunctors are covariant by nature

    Definition Classes
    BifunctorParent

Inherited from IsomorphismBifoldable[F, G]

Inherited from IsomorphismBifunctor[F, G]

Inherited from Bitraverse[F]

Inherited from Bifoldable[F]

Inherited from Bifunctor[F]

Inherited from BifunctorParent[F]

Inherited from AnyRef

Inherited from Any

Ungrouped