object Ran
- Source
- Kan.scala
- Alphabetic
- By Inheritance
- Ran
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Value Members
- final def !=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def ##(): Int
- Definition Classes
- AnyRef → Any
- final def ==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- def adjointToRan[F[_], G[_], A](f: F[A])(implicit A: Adjunction[F, G]): Ran[G, Id.Id, A]
- final def asInstanceOf[T0]: T0
- Definition Classes
- Any
- def clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @native()
- def composedAdjointToRan[F[_], G[_], H[_], A](h: H[F[A]])(implicit A: Adjunction[F, G], H: Functor[H]): Ran[G, H, A]
- final def eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def equals(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef → Any
- def finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable])
- def fromRan[G[_], H[_], K[_], B](k: K[G[B]])(s: ~>[K, [γ$2$]Ran[G, H, γ$2$]]): H[B]
toRan
andfromRan
witness an adjunction fromCompose[G,_,_]
toRan[G,_,_]
. - final def getClass(): Class[_ <: AnyRef]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
- def gran[G[_], H[_], A](r: Ran[G, H, G[A]]): H[A]
This is the natural transformation that defines a right Kan extension.
- def hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
- final def isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- final def ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- final def notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
- final def notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
- implicit def ranFunctor[G[_], H[_]]: Functor[[γ$0$]Ran[G, H, γ$0$]]
- def ranToAdjoint[F[_], G[_], A](r: Ran[G, Id.Id, A])(implicit A: Adjunction[F, G]): F[A]
- final def synchronized[T0](arg0: => T0): T0
- Definition Classes
- AnyRef
- def toRan[G[_], H[_], K[_], B](k: K[B])(s: ~>[[α]K[G[α]], H])(implicit arg0: Functor[K]): Ran[G, H, B]
The universal property of a right Kan extension.
The universal property of a right Kan extension. The functor
Ran[G,H,_]
and the natural transformationgran[G,H,_]
are couniversal in the sense that for any functorK
and a natural transformations
fromK[G[_]]
toH
, a unique natural transformationtoRan
exists fromK
toRan[G,H,_]
such that for allk
,gran(toRan(k)) = s(k)
. - def toString(): String
- Definition Classes
- AnyRef → Any
- final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()