trait IsomorphismEnum[F, G] extends Enum[F]
- Source
- Isomorphism.scala
- Alphabetic
- By Inheritance
- IsomorphismEnum
- Enum
- Order
- Equal
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Type Members
Abstract Value Members
Concrete Value Members
- final def !=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def ##: Int
- Definition Classes
- AnyRef → Any
- final def ==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- def apply(x: F, y: F): Ordering
- Definition Classes
- Order
- final def asInstanceOf[T0]: T0
- Definition Classes
- Any
- def clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @native()
- def contramap[B](f: (B) => F): Order[B]
- def enumLaw: EnumLaw
- Definition Classes
- Enum
- val enumSyntax: EnumSyntax[F]
- Definition Classes
- Enum
- final def eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def equal(x: F, y: F): Boolean
- def equalIsNatural: Boolean
- returns
true, if
equal(f1, f2)
is known to be equivalent tof1 == f2
- Definition Classes
- Equal
- def equalLaw: EqualLaw
- Definition Classes
- Equal
- val equalSyntax: EqualSyntax[F]
- Definition Classes
- Equal
- def equals(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef → Any
- def finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable])
- def from(a: F): EphemeralStream[F]
- Definition Classes
- Enum
- def fromStep(n: Int, a: F): EphemeralStream[F]
- Definition Classes
- Enum
- def fromStepTo(n: Int, a: F, z: F): EphemeralStream[F]
- Definition Classes
- Enum
- def fromStepToL(n: Int, a: F, z: F): List[F]
- Definition Classes
- Enum
- def fromTo(a: F, z: F): EphemeralStream[F]
- Definition Classes
- Enum
- def fromToL(a: F, z: F): List[F]
- Definition Classes
- Enum
- final def getClass(): Class[_ <: AnyRef]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
- def greaterThan(x: F, y: F): Boolean
- Definition Classes
- Order
- def greaterThanOrEqual(x: F, y: F): Boolean
- Definition Classes
- Order
- def hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
- final def isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- def lessThan(x: F, y: F): Boolean
- Definition Classes
- Order
- def lessThanOrEqual(x: F, y: F): Boolean
- Definition Classes
- Order
- def max: Option[F]
- Definition Classes
- Enum
- def max(x: F, y: F): F
- Definition Classes
- Order
- def min: Option[F]
- Definition Classes
- Enum
- def min(x: F, y: F): F
- Definition Classes
- Order
- final def ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- final def notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
- final def notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
- def orderLaw: OrderLaw
- Definition Classes
- Order
- val orderSyntax: OrderSyntax[F]
- Definition Classes
- Order
- def pred(a: F): F
- Definition Classes
- IsomorphismEnum → Enum
- def predState[X](f: (F) => X): State[F, X]
Produce a state value that executes the predecessor (
pred
) on each spin and executing the given function on the current value.Produce a state value that executes the predecessor (
pred
) on each spin and executing the given function on the current value. This is useful to implement decremental looping. Evaluating the state value requires a beginning to decrement from.- f
The function to execute on each spin of the state value.
- Definition Classes
- Enum
- def predStateMax[X, Y](f: (F) => X, k: (X) => Y): Option[Y]
Produce a value that starts at the maximum (if it exists) and decrements through a state value with the given mapping function.
Produce a value that starts at the maximum (if it exists) and decrements through a state value with the given mapping function. This is useful to implement decremental looping.
- f
The function to execute on each spin of the state value.
- k
The mapping function.
- Definition Classes
- Enum
- def predStateMaxM[X, Y](f: (F) => X, k: (X) => State[F, Y]): Option[Y]
Produce a value that starts at the maximum (if it exists) and decrements through a state value with the given binding function.
Produce a value that starts at the maximum (if it exists) and decrements through a state value with the given binding function. This is useful to implement decremental looping.
- f
The function to execute on each spin of the state value.
- k
The binding function.
- Definition Classes
- Enum
- def predStateZero[X, Y](f: (F) => X, k: (X) => Y)(implicit m: Monoid[F]): Y
Produce a value that starts at zero (
Monoid.zero
) and decrements through a state value with the given mapping function.Produce a value that starts at zero (
Monoid.zero
) and decrements through a state value with the given mapping function. This is useful to implement decremental looping.- f
The function to execute on each spin of the state value.
- k
The mapping function.
- m
The implementation of the zero function from which to start.
- Definition Classes
- Enum
- def predStateZeroM[X, Y](f: (F) => X, k: (X) => State[F, Y])(implicit m: Monoid[F]): Y
Produce a value that starts at zero (
Monoid.zero
) and decrements through a state value with the given binding function.Produce a value that starts at zero (
Monoid.zero
) and decrements through a state value with the given binding function. This is useful to implement decremental looping.- f
The function to execute on each spin of the state value.
- k
The binding function.
- m
The implementation of the zero function from which to start.
- Definition Classes
- Enum
- def predn(n: Int, a: F): F
- Definition Classes
- Enum
- def predx: Kleisli[Option, F, F]
Moves to the predecessor, unless at the minimum.
Moves to the predecessor, unless at the minimum.
- Definition Classes
- Enum
- def reverseOrder: Order[F]
- Definition Classes
- Order
- def sort(x: F, y: F): (F, F)
- Definition Classes
- Order
- def succ(a: F): F
- Definition Classes
- IsomorphismEnum → Enum
- def succState[X](f: (F) => X): State[F, X]
Produce a state value that executes the successor (
succ
) on each spin and executing the given function on the current value.Produce a state value that executes the successor (
succ
) on each spin and executing the given function on the current value. This is useful to implement incremental looping. Evaluating the state value requires a beginning to increment from.- f
The function to execute on each spin of the state value.
- Definition Classes
- Enum
- def succStateMin[X, Y](f: (F) => X, k: (X) => Y): Option[Y]
Produce a value that starts at the minimum (if it exists) and increments through a state value with the given mapping function.
Produce a value that starts at the minimum (if it exists) and increments through a state value with the given mapping function. This is useful to implement incremental looping.
- f
The function to execute on each spin of the state value.
- k
The mapping function.
- Definition Classes
- Enum
- def succStateMinM[X, Y](f: (F) => X, k: (X) => State[F, Y]): Option[Y]
Produce a value that starts at the minimum (if it exists) and increments through a state value with the given binding function.
Produce a value that starts at the minimum (if it exists) and increments through a state value with the given binding function. This is useful to implement incremental looping.
- f
The function to execute on each spin of the state value.
- k
The binding function.
- Definition Classes
- Enum
- def succStateZero[X, Y](f: (F) => X, k: (X) => Y)(implicit m: Monoid[F]): Y
Produce a value that starts at zero (
Monoid.zero
) and increments through a state value with the given mapping function.Produce a value that starts at zero (
Monoid.zero
) and increments through a state value with the given mapping function. This is useful to implement incremental looping.- f
The function to execute on each spin of the state value.
- k
The mapping function.
- m
The implementation of the zero function from which to start.
- Definition Classes
- Enum
- def succStateZeroM[X, Y](f: (F) => X, k: (X) => State[F, Y])(implicit m: Monoid[F]): Y
Produce a value that starts at zero (
Monoid.zero
) and increments through a state value with the given binding function.Produce a value that starts at zero (
Monoid.zero
) and increments through a state value with the given binding function. This is useful to implement incremental looping.- f
The function to execute on each spin of the state value.
- k
The binding function.
- m
The implementation of the zero function from which to start.
- Definition Classes
- Enum
- def succn(n: Int, a: F): F
- Definition Classes
- Enum
- def succx: Kleisli[Option, F, F]
Moves to the successor, unless at the maximum.
Moves to the successor, unless at the maximum.
- Definition Classes
- Enum
- final def synchronized[T0](arg0: => T0): T0
- Definition Classes
- AnyRef
- def toScalaOrdering: scala.math.Ordering[F]
- Definition Classes
- Order
- Note
Order.fromScalaOrdering(toScalaOrdering).order(x, y)
this.order(x, y)
- def toString(): String
- Definition Classes
- AnyRef → Any
- final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()