Packages

trait MonadError[F[_], S] extends Monad[F] with ApplicativeError[F, S]

Self Type
MonadError[F, S]
Source
MonadError.scala
Linear Supertypes
Known Subclasses
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. MonadError
  2. ApplicativeError
  3. Monad
  4. Bind
  5. Applicative
  6. InvariantApplicative
  7. Apply
  8. Functor
  9. InvariantFunctor
  10. AnyRef
  11. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. Protected

Type Members

  1. trait ApplicativeLaw extends ApplyLaw
    Definition Classes
    Applicative
  2. trait ApplicativeErrorLaws extends AnyRef
    Definition Classes
    ApplicativeError
  3. trait ApplyLaw extends FunctorLaw
    Definition Classes
    Apply
  4. trait BindLaw extends ApplyLaw
    Definition Classes
    Bind
  5. trait FunctorLaw extends InvariantFunctorLaw
    Definition Classes
    Functor
  6. trait InvariantFunctorLaw extends AnyRef
    Definition Classes
    InvariantFunctor
  7. trait MonadLaw extends ApplicativeLaw with BindLaw
    Definition Classes
    Monad
  8. trait MonadErrorLaw extends ApplicativeErrorLaws

Abstract Value Members

  1. abstract def bind[A, B](fa: F[A])(f: (A) => F[B]): F[B]

    Equivalent to join(map(fa)(f)).

    Equivalent to join(map(fa)(f)).

    Definition Classes
    Bind
  2. abstract def handleError[A](fa: F[A])(f: (S) => F[A]): F[A]
    Definition Classes
    ApplicativeError
  3. abstract def point[A](a: => A): F[A]
    Definition Classes
    Applicative
  4. abstract def raiseError[A](e: S): F[A]
    Definition Classes
    ApplicativeError

Concrete Value Members

  1. def ap[A, B](fa: => F[A])(f: => F[(A) => B]): F[B]

    Sequence f, then fa, combining their results by function application.

    Sequence f, then fa, combining their results by function application.

    NB: with respect to apply2 and all other combinators, as well as scalaz.Bind, the f action appears to the *left*. So f should be the "first" F-action to perform. This is in accordance with all other implementations of this typeclass in common use, which are "function first".

    Definition Classes
    BindApply
  2. def ap2[A, B, C](fa: => F[A], fb: => F[B])(f: F[(A, B) => C]): F[C]
    Definition Classes
    Apply
  3. def ap3[A, B, C, D](fa: => F[A], fb: => F[B], fc: => F[C])(f: F[(A, B, C) => D]): F[D]
    Definition Classes
    Apply
  4. def ap4[A, B, C, D, E](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D])(f: F[(A, B, C, D) => E]): F[E]
    Definition Classes
    Apply
  5. def ap5[A, B, C, D, E, R](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D], fe: => F[E])(f: F[(A, B, C, D, E) => R]): F[R]
    Definition Classes
    Apply
  6. def ap6[A, B, C, D, E, FF, R](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D], fe: => F[E], ff: => F[FF])(f: F[(A, B, C, D, E, FF) => R]): F[R]
    Definition Classes
    Apply
  7. def ap7[A, B, C, D, E, FF, G, R](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D], fe: => F[E], ff: => F[FF], fg: => F[G])(f: F[(A, B, C, D, E, FF, G) => R]): F[R]
    Definition Classes
    Apply
  8. def ap8[A, B, C, D, E, FF, G, H, R](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D], fe: => F[E], ff: => F[FF], fg: => F[G], fh: => F[H])(f: F[(A, B, C, D, E, FF, G, H) => R]): F[R]
    Definition Classes
    Apply
  9. def apF[A, B](f: => F[(A) => B]): (F[A]) => F[B]

    Flipped variant of ap.

    Flipped variant of ap.

    Definition Classes
    Apply
  10. def applicativeErrorLaws: ApplicativeErrorLaws
    Definition Classes
    ApplicativeError
  11. val applicativeErrorSyntax: ApplicativeErrorSyntax[F, S]
    Definition Classes
    ApplicativeError
  12. def applicativeLaw: ApplicativeLaw
    Definition Classes
    Applicative
  13. val applicativeSyntax: ApplicativeSyntax[F]
    Definition Classes
    Applicative
  14. def apply[A, B](fa: F[A])(f: (A) => B): F[B]

    Alias for map.

    Alias for map.

    Definition Classes
    Functor
  15. def apply10[A, B, C, D, E, FF, G, H, I, J, R](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D], fe: => F[E], ff: => F[FF], fg: => F[G], fh: => F[H], fi: => F[I], fj: => F[J])(f: (A, B, C, D, E, FF, G, H, I, J) => R): F[R]
    Definition Classes
    Apply
  16. def apply11[A, B, C, D, E, FF, G, H, I, J, K, R](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D], fe: => F[E], ff: => F[FF], fg: => F[G], fh: => F[H], fi: => F[I], fj: => F[J], fk: => F[K])(f: (A, B, C, D, E, FF, G, H, I, J, K) => R): F[R]
    Definition Classes
    Apply
  17. def apply12[A, B, C, D, E, FF, G, H, I, J, K, L, R](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D], fe: => F[E], ff: => F[FF], fg: => F[G], fh: => F[H], fi: => F[I], fj: => F[J], fk: => F[K], fl: => F[L])(f: (A, B, C, D, E, FF, G, H, I, J, K, L) => R): F[R]
    Definition Classes
    Apply
  18. def apply2[A, B, C](fa: => F[A], fb: => F[B])(f: (A, B) => C): F[C]
    Definition Classes
    BindApply
  19. def apply3[A, B, C, D](fa: => F[A], fb: => F[B], fc: => F[C])(f: (A, B, C) => D): F[D]
    Definition Classes
    Apply
  20. def apply4[A, B, C, D, E](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D])(f: (A, B, C, D) => E): F[E]
    Definition Classes
    Apply
  21. def apply5[A, B, C, D, E, R](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D], fe: => F[E])(f: (A, B, C, D, E) => R): F[R]
    Definition Classes
    Apply
  22. def apply6[A, B, C, D, E, FF, R](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D], fe: => F[E], ff: => F[FF])(f: (A, B, C, D, E, FF) => R): F[R]
    Definition Classes
    Apply
  23. def apply7[A, B, C, D, E, FF, G, R](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D], fe: => F[E], ff: => F[FF], fg: => F[G])(f: (A, B, C, D, E, FF, G) => R): F[R]
    Definition Classes
    Apply
  24. def apply8[A, B, C, D, E, FF, G, H, R](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D], fe: => F[E], ff: => F[FF], fg: => F[G], fh: => F[H])(f: (A, B, C, D, E, FF, G, H) => R): F[R]
    Definition Classes
    Apply
  25. def apply9[A, B, C, D, E, FF, G, H, I, R](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D], fe: => F[E], ff: => F[FF], fg: => F[G], fh: => F[H], fi: => F[I])(f: (A, B, C, D, E, FF, G, H, I) => R): F[R]
    Definition Classes
    Apply
  26. def applyApplicative: Applicative[[α]\/[F[α], α]]

    Add a unit to any Apply to form an Applicative.

    Add a unit to any Apply to form an Applicative.

    Definition Classes
    Apply
  27. def applyLaw: ApplyLaw
    Definition Classes
    Apply
  28. val applySyntax: ApplySyntax[F]
    Definition Classes
    Apply
  29. final def applying1[Z, A1](f: (A1) => Z)(implicit a1: F[A1]): F[Z]
    Definition Classes
    Apply
  30. final def applying2[Z, A1, A2](f: (A1, A2) => Z)(implicit a1: F[A1], a2: F[A2]): F[Z]
    Definition Classes
    Apply
  31. final def applying3[Z, A1, A2, A3](f: (A1, A2, A3) => Z)(implicit a1: F[A1], a2: F[A2], a3: F[A3]): F[Z]
    Definition Classes
    Apply
  32. final def applying4[Z, A1, A2, A3, A4](f: (A1, A2, A3, A4) => Z)(implicit a1: F[A1], a2: F[A2], a3: F[A3], a4: F[A4]): F[Z]
    Definition Classes
    Apply
  33. def bicompose[G[_, _]](implicit arg0: Bifunctor[G]): Bifunctor[[α, β]F[G[α, β]]]

    The composition of Functor F and Bifunctor G, [x, y]F[G[x, y]], is a Bifunctor

    The composition of Functor F and Bifunctor G, [x, y]F[G[x, y]], is a Bifunctor

    Definition Classes
    Functor
  34. def bindLaw: BindLaw
    Definition Classes
    Bind
  35. val bindSyntax: BindSyntax[F]
    Definition Classes
    Bind
  36. def compose[G[_]](implicit G0: Applicative[G]): Applicative[[α]F[G[α]]]

    The composition of Applicatives F and G, [x]F[G[x]], is an Applicative

    The composition of Applicatives F and G, [x]F[G[x]], is an Applicative

    Definition Classes
    Applicative
  37. def compose[G[_]](implicit G0: Apply[G]): Apply[[α]F[G[α]]]

    The composition of Applys F and G, [x]F[G[x]], is a Apply

    The composition of Applys F and G, [x]F[G[x]], is a Apply

    Definition Classes
    Apply
  38. def compose[G[_]](implicit G0: Functor[G]): Functor[[α]F[G[α]]]

    The composition of Functors F and G, [x]F[G[x]], is a Functor

    The composition of Functors F and G, [x]F[G[x]], is a Functor

    Definition Classes
    Functor
  39. def counzip[A, B](a: \/[F[A], F[B]]): F[\/[A, B]]
    Definition Classes
    Functor
  40. def discardLeft[A, B](fa: => F[A], fb: => F[B]): F[B]

    Combine fa and fb according to Apply[F] with a function that discards the A(s)

    Combine fa and fb according to Apply[F] with a function that discards the A(s)

    Definition Classes
    Apply
  41. def discardRight[A, B](fa: => F[A], fb: => F[B]): F[A]

    Combine fa and fb according to Apply[F] with a function that discards the B(s)

    Combine fa and fb according to Apply[F] with a function that discards the B(s)

    Definition Classes
    Apply
  42. def emap[A, B](fa: F[A])(f: (A) => \/[S, B]): F[B]
  43. def filterM[A](l: IList[A])(f: (A) => F[Boolean]): F[IList[A]]

    Filter l according to an applicative predicate.

    Filter l according to an applicative predicate.

    Definition Classes
    Applicative
  44. def filterM[A](l: List[A])(f: (A) => F[Boolean]): F[List[A]]

    Filter l according to an applicative predicate.

    Filter l according to an applicative predicate.

    Definition Classes
    Applicative
  45. def filterM[A, B](map: ==>>[A, B])(f: (B) => F[Boolean])(implicit O: Order[A]): F[==>>[A, B]]

    Filter map according to an applicative predicate.

    Filter map according to an applicative predicate. *

    Definition Classes
    Applicative
  46. def flip: Applicative[F]

    An Applicative for F in which effects happen in the opposite order.

    An Applicative for F in which effects happen in the opposite order.

    Definition Classes
    ApplicativeApply
  47. def forever[A, B](fa: F[A]): F[B]

    Repeats an applicative action infinitely

    Repeats an applicative action infinitely

    Definition Classes
    Apply
  48. def fpair[A](fa: F[A]): F[(A, A)]

    Twin all As in fa.

    Twin all As in fa.

    Definition Classes
    Functor
  49. def fproduct[A, B](fa: F[A])(f: (A) => B): F[(A, B)]

    Pair all As in fa with the result of function application.

    Pair all As in fa with the result of function application.

    Definition Classes
    Functor
  50. def functorLaw: FunctorLaw
    Definition Classes
    Functor
  51. val functorSyntax: FunctorSyntax[F]
    Definition Classes
    Functor
  52. def icompose[G[_]](implicit G0: Contravariant[G]): Contravariant[[α]F[G[α]]]

    The composition of Functor F and Contravariant G, [x]F[G[x]], is contravariant.

    The composition of Functor F and Contravariant G, [x]F[G[x]], is contravariant.

    Definition Classes
    Functor
  53. def ifM[B](value: F[Boolean], ifTrue: => F[B], ifFalse: => F[B]): F[B]

    if lifted into a binding.

    if lifted into a binding. Unlike lift3((t,c,a)=>if(t)c else a), this will only include context from the chosen of ifTrue and ifFalse, not the other.

    Definition Classes
    Bind
  54. val invariantApplicativeSyntax: InvariantApplicativeSyntax[F]
    Definition Classes
    InvariantApplicative
  55. def invariantFunctorLaw: InvariantFunctorLaw
    Definition Classes
    InvariantFunctor
  56. val invariantFunctorSyntax: InvariantFunctorSyntax[F]
    Definition Classes
    InvariantFunctor
  57. def iterateUntil[A](f: F[A])(p: (A) => Boolean): F[A]

    Execute an action repeatedly until its result satisfies the given predicate and return that result, discarding all others.

    Execute an action repeatedly until its result satisfies the given predicate and return that result, discarding all others.

    Definition Classes
    Monad
  58. def iterateWhile[A](f: F[A])(p: (A) => Boolean): F[A]

    Execute an action repeatedly until its result fails to satisfy the given predicate and return that result, discarding all others.

    Execute an action repeatedly until its result fails to satisfy the given predicate and return that result, discarding all others.

    Definition Classes
    Monad
  59. def join[A](ffa: F[F[A]]): F[A]

    Sequence the inner F of FFA after the outer F, forming a single F[A].

    Sequence the inner F of FFA after the outer F, forming a single F[A].

    Definition Classes
    Bind
  60. def lift[A, B](f: (A) => B): (F[A]) => F[B]

    Lift f into F.

    Lift f into F.

    Definition Classes
    Functor
  61. def lift10[A, B, C, D, E, FF, G, H, I, J, R](f: (A, B, C, D, E, FF, G, H, I, J) => R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H], F[I], F[J]) => F[R]
    Definition Classes
    Apply
  62. def lift11[A, B, C, D, E, FF, G, H, I, J, K, R](f: (A, B, C, D, E, FF, G, H, I, J, K) => R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H], F[I], F[J], F[K]) => F[R]
    Definition Classes
    Apply
  63. def lift12[A, B, C, D, E, FF, G, H, I, J, K, L, R](f: (A, B, C, D, E, FF, G, H, I, J, K, L) => R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H], F[I], F[J], F[K], F[L]) => F[R]
    Definition Classes
    Apply
  64. def lift2[A, B, C](f: (A, B) => C): (F[A], F[B]) => F[C]
    Definition Classes
    Apply
  65. def lift3[A, B, C, D](f: (A, B, C) => D): (F[A], F[B], F[C]) => F[D]
    Definition Classes
    Apply
  66. def lift4[A, B, C, D, E](f: (A, B, C, D) => E): (F[A], F[B], F[C], F[D]) => F[E]
    Definition Classes
    Apply
  67. def lift5[A, B, C, D, E, R](f: (A, B, C, D, E) => R): (F[A], F[B], F[C], F[D], F[E]) => F[R]
    Definition Classes
    Apply
  68. def lift6[A, B, C, D, E, FF, R](f: (A, B, C, D, E, FF) => R): (F[A], F[B], F[C], F[D], F[E], F[FF]) => F[R]
    Definition Classes
    Apply
  69. def lift7[A, B, C, D, E, FF, G, R](f: (A, B, C, D, E, FF, G) => R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G]) => F[R]
    Definition Classes
    Apply
  70. def lift8[A, B, C, D, E, FF, G, H, R](f: (A, B, C, D, E, FF, G, H) => R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H]) => F[R]
    Definition Classes
    Apply
  71. def lift9[A, B, C, D, E, FF, G, H, I, R](f: (A, B, C, D, E, FF, G, H, I) => R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H], F[I]) => F[R]
    Definition Classes
    Apply
  72. def liftReducer[A, B](implicit r: Reducer[A, B]): Reducer[F[A], F[B]]
    Definition Classes
    Apply
  73. def map[A, B](fa: F[A])(f: (A) => B): F[B]

    Lift f into F and apply to F[A].

    Lift f into F and apply to F[A].

    Definition Classes
    MonadApplicativeFunctor
  74. def mapply[A, B](a: A)(f: F[(A) => B]): F[B]

    Lift apply(a), and apply the result to f.

    Lift apply(a), and apply the result to f.

    Definition Classes
    Functor
  75. def monadErrorLaw: MonadErrorLaw
  76. val monadErrorSyntax: MonadErrorSyntax[F, S]
  77. def monadLaw: MonadLaw
    Definition Classes
    Monad
  78. val monadSyntax: MonadSyntax[F]
    Definition Classes
    Monad
  79. def mproduct[A, B](fa: F[A])(f: (A) => F[B]): F[(A, B)]

    Pair A with the result of function application.

    Pair A with the result of function application.

    Definition Classes
    Bind
  80. def par: Par[F]

    A lawful implementation of this that is isomorphic up to the methods defined on Applicative allowing for optimised parallel implementations that would otherwise violate laws of more specific typeclasses (e.g.

    A lawful implementation of this that is isomorphic up to the methods defined on Applicative allowing for optimised parallel implementations that would otherwise violate laws of more specific typeclasses (e.g. Monad).

    Definition Classes
    Applicative
  81. def plusA[A](x: => F[A], y: => F[A])(implicit sa: Semigroup[A]): F[A]

    Semigroups can be added within an Applicative

    Semigroups can be added within an Applicative

    Definition Classes
    Applicative
  82. def product[G[_]](implicit G0: Monad[G]): Monad[[α](F[α], G[α])]

    The product of Monad F and G, [x](F[x], G[x]]), is a Monad

    The product of Monad F and G, [x](F[x], G[x]]), is a Monad

    Definition Classes
    Monad
  83. def product[G[_]](implicit G0: Bind[G]): Bind[[α](F[α], G[α])]

    The product of Bind F and G, [x](F[x], G[x]]), is a Bind

    The product of Bind F and G, [x](F[x], G[x]]), is a Bind

    Definition Classes
    Bind
  84. def product[G[_]](implicit G0: Applicative[G]): Applicative[[α](F[α], G[α])]

    The product of Applicatives F and G, [x](F[x], G[x]]), is an Applicative

    The product of Applicatives F and G, [x](F[x], G[x]]), is an Applicative

    Definition Classes
    Applicative
  85. def product[G[_]](implicit G0: Apply[G]): Apply[[α](F[α], G[α])]

    The product of Applys F and G, [x](F[x], G[x]]), is a Apply

    The product of Applys F and G, [x](F[x], G[x]]), is a Apply

    Definition Classes
    Apply
  86. def product[G[_]](implicit G0: Functor[G]): Functor[[α](F[α], G[α])]

    The product of Functors F and G, [x](F[x], G[x]]), is a Functor

    The product of Functors F and G, [x](F[x], G[x]]), is a Functor

    Definition Classes
    Functor
  87. final def pure[A](a: => A): F[A]
    Definition Classes
    Applicative
  88. def replicateM[A](n: Int, fa: F[A]): F[IList[A]]

    Performs the action n times, returning the list of results.

    Performs the action n times, returning the list of results.

    Definition Classes
    Applicative
  89. def replicateM_[A](n: Int, fa: F[A]): F[Unit]

    Performs the action n times, returning nothing.

    Performs the action n times, returning nothing.

    Definition Classes
    Applicative
  90. def sequence[A, G[_]](as: G[F[A]])(implicit arg0: Traverse[G]): F[G[A]]
    Definition Classes
    Applicative
  91. def sequence1[A, G[_]](as: G[F[A]])(implicit arg0: Traverse1[G]): F[G[A]]
    Definition Classes
    Apply
  92. def strengthL[A, B](a: A, f: F[B]): F[(A, B)]

    Inject a to the left of Bs in f.

    Inject a to the left of Bs in f.

    Definition Classes
    Functor
  93. def strengthR[A, B](f: F[A], b: B): F[(A, B)]

    Inject b to the right of As in f.

    Inject b to the right of As in f.

    Definition Classes
    Functor
  94. def traverse[A, G[_], B](value: G[A])(f: (A) => F[B])(implicit G: Traverse[G]): F[G[B]]
    Definition Classes
    Applicative
  95. def traverse1[A, G[_], B](value: G[A])(f: (A) => F[B])(implicit G: Traverse1[G]): F[G[B]]
    Definition Classes
    Apply
  96. def tuple2[A, B](fa: => F[A], fb: => F[B]): F[(A, B)]
    Definition Classes
    Apply
  97. def tuple3[A, B, C](fa: => F[A], fb: => F[B], fc: => F[C]): F[(A, B, C)]
    Definition Classes
    Apply
  98. def tuple4[A, B, C, D](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D]): F[(A, B, C, D)]
    Definition Classes
    Apply
  99. def tuple5[A, B, C, D, E](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D], fe: => F[E]): F[(A, B, C, D, E)]
    Definition Classes
    Apply
  100. def unfoldrOpt[S, A, B](seed: S)(f: (S) => Maybe[(F[A], S)])(implicit R: Reducer[A, B]): Maybe[F[B]]

    Unfold seed to the right and combine effects left-to-right, using the given Reducer to combine values.

    Unfold seed to the right and combine effects left-to-right, using the given Reducer to combine values. Implementations may override this method to not unfold more than is necessary to determine the result.

    Definition Classes
    Apply
  101. def unlessM[A](cond: Boolean)(f: => F[A]): F[Unit]

    Returns the given argument if cond is false, otherwise, unit lifted into F.

    Returns the given argument if cond is false, otherwise, unit lifted into F.

    Definition Classes
    Applicative
  102. def untilM[G[_], A](f: F[A], cond: => F[Boolean])(implicit G: MonadPlus[G]): F[G[A]]

    Execute an action repeatedly until the Boolean condition returns true.

    Execute an action repeatedly until the Boolean condition returns true. The condition is evaluated after the loop body. Collects results into an arbitrary MonadPlus value, such as a List.

    Definition Classes
    Monad
  103. def untilM_[A](f: F[A], cond: => F[Boolean]): F[Unit]

    Execute an action repeatedly until the Boolean condition returns true.

    Execute an action repeatedly until the Boolean condition returns true. The condition is evaluated after the loop body. Discards results.

    Definition Classes
    Monad
  104. def void[A](fa: F[A]): F[Unit]

    Empty fa of meaningful pure values, preserving its structure.

    Empty fa of meaningful pure values, preserving its structure.

    Definition Classes
    Functor
  105. def whenM[A](cond: Boolean)(f: => F[A]): F[Unit]

    Returns the given argument if cond is true, otherwise, unit lifted into F.

    Returns the given argument if cond is true, otherwise, unit lifted into F.

    Definition Classes
    Applicative
  106. def whileM[G[_], A](p: F[Boolean], body: => F[A])(implicit G: MonadPlus[G]): F[G[A]]

    Execute an action repeatedly as long as the given Boolean expression returns true.

    Execute an action repeatedly as long as the given Boolean expression returns true. The condition is evaluated before the loop body. Collects the results into an arbitrary MonadPlus value, such as a List.

    Definition Classes
    Monad
  107. def whileM_[A](p: F[Boolean], body: => F[A]): F[Unit]

    Execute an action repeatedly as long as the given Boolean expression returns true.

    Execute an action repeatedly as long as the given Boolean expression returns true. The condition is evaluated before the loop body. Discards results.

    Definition Classes
    Monad
  108. def widen[A, B](fa: F[A])(implicit ev: <~<[A, B]): F[B]

    Functors are covariant by nature, so we can treat an F[A] as an F[B] if A is a subtype of B.

    Functors are covariant by nature, so we can treat an F[A] as an F[B] if A is a subtype of B.

    Definition Classes
    Functor
  109. final def xderiving0[Z](z: => Z): F[Z]
    Definition Classes
    InvariantApplicative
  110. final def xderiving1[Z, A1](f: (A1) => Z, g: (Z) => A1)(implicit a1: F[A1]): F[Z]
    Definition Classes
    InvariantApplicative
  111. final def xderiving2[Z, A1, A2](f: (A1, A2) => Z, g: (Z) => (A1, A2))(implicit a1: F[A1], a2: F[A2]): F[Z]
    Definition Classes
    InvariantApplicative
  112. final def xderiving3[Z, A1, A2, A3](f: (A1, A2, A3) => Z, g: (Z) => (A1, A2, A3))(implicit a1: F[A1], a2: F[A2], a3: F[A3]): F[Z]
    Definition Classes
    InvariantApplicative
  113. final def xderiving4[Z, A1, A2, A3, A4](f: (A1, A2, A3, A4) => Z, g: (Z) => (A1, A2, A3, A4))(implicit a1: F[A1], a2: F[A2], a3: F[A3], a4: F[A4]): F[Z]
    Definition Classes
    InvariantApplicative
  114. def xmap[A, B](fa: F[A], f: (A) => B, g: (B) => A): F[B]

    Converts ma to a value of type F[B] using the provided functions f and g.

    Converts ma to a value of type F[B] using the provided functions f and g.

    Definition Classes
    FunctorInvariantFunctor
  115. def xmapb[A, B](ma: F[A])(b: Bijection[A, B]): F[B]

    Converts ma to a value of type F[B] using the provided bijection.

    Converts ma to a value of type F[B] using the provided bijection.

    Definition Classes
    InvariantFunctor
  116. def xmapi[A, B](ma: F[A])(iso: Isomorphism.<=>[A, B]): F[B]

    Converts ma to a value of type F[B] using the provided isomorphism.

    Converts ma to a value of type F[B] using the provided isomorphism.

    Definition Classes
    InvariantFunctor
  117. def xproduct0[Z](z: => Z): F[Z]
    Definition Classes
    ApplicativeInvariantApplicative
  118. def xproduct1[Z, A1](a1: => F[A1])(f: (A1) => Z, g: (Z) => A1): F[Z]
    Definition Classes
    ApplicativeInvariantApplicative
  119. def xproduct2[Z, A1, A2](a1: => F[A1], a2: => F[A2])(f: (A1, A2) => Z, g: (Z) => (A1, A2)): F[Z]
    Definition Classes
    ApplicativeInvariantApplicative
  120. def xproduct3[Z, A1, A2, A3](a1: => F[A1], a2: => F[A2], a3: => F[A3])(f: (A1, A2, A3) => Z, g: (Z) => (A1, A2, A3)): F[Z]
    Definition Classes
    ApplicativeInvariantApplicative
  121. def xproduct4[Z, A1, A2, A3, A4](a1: => F[A1], a2: => F[A2], a3: => F[A3], a4: => F[A4])(f: (A1, A2, A3, A4) => Z, g: (Z) => (A1, A2, A3, A4)): F[Z]
    Definition Classes
    ApplicativeInvariantApplicative