Packages

t

scalaz

IsomorphismDecidable

trait IsomorphismDecidable[F[_], G[_]] extends Decidable[F] with IsomorphismDivisible[F, G] with IsomorphismInvariantAlt[F, G]

Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. IsomorphismDecidable
  2. IsomorphismInvariantAlt
  3. IsomorphismDivisible
  4. IsomorphismInvariantApplicative
  5. IsomorphismDivide
  6. IsomorphismContravariant
  7. IsomorphismInvariantFunctor
  8. Decidable
  9. InvariantAlt
  10. Divisible
  11. InvariantApplicative
  12. Divide
  13. Contravariant
  14. InvariantFunctor
  15. AnyRef
  16. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. Protected

Type Members

  1. trait ContravariantLaw extends InvariantFunctorLaw
    Definition Classes
    Contravariant
  2. trait DecidableLaw extends DivisibleLaw
    Definition Classes
    Decidable
  3. trait DivideLaw extends ContravariantLaw
    Definition Classes
    Divide
  4. trait DivisibleLaw extends DivideLaw
    Definition Classes
    Divisible
  5. trait InvariantFunctorLaw extends AnyRef
    Definition Classes
    InvariantFunctor

Concrete Value Members

  1. final def choose[Z, A1, A2](a1: => F[A1], a2: => F[A2])(f: (Z) => \/[A1, A2]): F[Z]
    Definition Classes
    Decidable
  2. def choose1[Z, A1](a1: => F[A1])(f: (Z) => A1): F[Z]
    Definition Classes
    Decidable
  3. def choose2[Z, A1, A2](a1: => F[A1], a2: => F[A2])(f: (Z) => \/[A1, A2]): F[Z]
    Definition Classes
    IsomorphismDecidableDecidable
  4. def choose3[Z, A1, A2, A3](a1: => F[A1], a2: => F[A2], a3: => F[A3])(f: (Z) => \/[A1, \/[A2, A3]]): F[Z]
    Definition Classes
    Decidable
  5. def choose4[Z, A1, A2, A3, A4](a1: => F[A1], a2: => F[A2], a3: => F[A3], a4: => F[A4])(f: (Z) => \/[A1, \/[A2, \/[A3, A4]]]): F[Z]
    Definition Classes
    Decidable
  6. final def choosing2[Z, A1, A2](f: (Z) => \/[A1, A2])(implicit fa1: F[A1], fa2: F[A2]): F[Z]
    Definition Classes
    Decidable
  7. final def choosing3[Z, A1, A2, A3](f: (Z) => \/[A1, \/[A2, A3]])(implicit fa1: F[A1], fa2: F[A2], fa3: F[A3]): F[Z]
    Definition Classes
    Decidable
  8. final def choosing4[Z, A1, A2, A3, A4](f: (Z) => \/[A1, \/[A2, \/[A3, A4]]])(implicit fa1: F[A1], fa2: F[A2], fa3: F[A3], fa4: F[A4]): F[Z]
    Definition Classes
    Decidable
  9. def compose[G[_]](implicit G0: Contravariant[G]): Functor[[α]F[G[α]]]

    The composition of Contravariant F and G, [x]F[G[x]], is covariant.

    The composition of Contravariant F and G, [x]F[G[x]], is covariant.

    Definition Classes
    Contravariant
  10. def conquer[A]: F[A]

    Universally quantified instance of F[_]

    Universally quantified instance of F[_]

    Definition Classes
    IsomorphismDivisibleDivisible
  11. def contramap[A, B](r: F[A])(f: (B) => A): F[B]

    Transform A.

    Transform A.

    Definition Classes
    IsomorphismContravariantContravariant
    Note

    contramap(r)(identity) = r

  12. def contravariantLaw: ContravariantLaw
    Definition Classes
    Contravariant
  13. val contravariantSyntax: ContravariantSyntax[F]
    Definition Classes
    Contravariant
  14. def decidableLaw: DecidableLaw
    Definition Classes
    Decidable
  15. val decidableSyntax: DecidableSyntax[F]
    Definition Classes
    Decidable
  16. final def divide[A, B, C](fa: => F[A], fb: => F[B])(f: (C) => (A, B)): F[C]
    Definition Classes
    Divide
  17. final def divide1[A1, Z](a1: F[A1])(f: (Z) => A1): F[Z]
    Definition Classes
    Divide
  18. def divide2[A, B, C](fa: => F[A], fb: => F[B])(f: (C) => (A, B)): F[C]
    Definition Classes
    IsomorphismDivideDivide
  19. def divide3[A1, A2, A3, Z](a1: => F[A1], a2: => F[A2], a3: => F[A3])(f: (Z) => (A1, A2, A3)): F[Z]
    Definition Classes
    Divide
  20. def divide4[A1, A2, A3, A4, Z](a1: => F[A1], a2: => F[A2], a3: => F[A3], a4: => F[A4])(f: (Z) => (A1, A2, A3, A4)): F[Z]
    Definition Classes
    Divide
  21. def divideLaw: DivideLaw
    Definition Classes
    Divide
  22. val divideSyntax: DivideSyntax[F]
    Definition Classes
    Divide
  23. final def dividing1[A1, Z](f: (Z) => A1)(implicit a1: F[A1]): F[Z]
    Definition Classes
    Divide
  24. final def dividing2[A1, A2, Z](f: (Z) => (A1, A2))(implicit a1: F[A1], a2: F[A2]): F[Z]
    Definition Classes
    Divide
  25. final def dividing3[A1, A2, A3, Z](f: (Z) => (A1, A2, A3))(implicit a1: F[A1], a2: F[A2], a3: F[A3]): F[Z]
    Definition Classes
    Divide
  26. final def dividing4[A1, A2, A3, A4, Z](f: (Z) => (A1, A2, A3, A4))(implicit a1: F[A1], a2: F[A2], a3: F[A3], a4: F[A4]): F[Z]
    Definition Classes
    Divide
  27. def divisibleLaw: DivisibleLaw
    Definition Classes
    Divisible
  28. val divisibleSyntax: DivisibleSyntax[F]
    Definition Classes
    Divisible
  29. def icompose[G[_]](implicit G0: Functor[G]): Contravariant[[α]F[G[α]]]

    The composition of Contravariant F and Functor G, [x]F[G[x]], is contravariant.

    The composition of Contravariant F and Functor G, [x]F[G[x]], is contravariant.

    Definition Classes
    Contravariant
  30. val invariantAltSyntax: InvariantAltSyntax[F]
    Definition Classes
    InvariantAlt
  31. val invariantApplicativeSyntax: InvariantApplicativeSyntax[F]
    Definition Classes
    InvariantApplicative
  32. def invariantFunctorLaw: InvariantFunctorLaw
    Definition Classes
    InvariantFunctor
  33. val invariantFunctorSyntax: InvariantFunctorSyntax[F]
    Definition Classes
    InvariantFunctor
  34. def narrow[A, B](fa: F[A])(implicit ev: <~<[B, A]): F[B]
    Definition Classes
    Contravariant
  35. def product[G[_]](implicit G0: Contravariant[G]): Contravariant[[α](F[α], G[α])]

    The product of Contravariant F and G, [x](F[x], G[x]]), is contravariant.

    The product of Contravariant F and G, [x](F[x], G[x]]), is contravariant.

    Definition Classes
    Contravariant
  36. def tuple2[A1, A2](a1: => F[A1], a2: => F[A2]): F[(A1, A2)]
    Definition Classes
    Divide
  37. final def xcoderiving1[Z, A1](f: (A1) => Z, g: (Z) => A1)(implicit a1: F[A1]): F[Z]
    Definition Classes
    InvariantAlt
  38. final def xcoderiving2[Z, A1, A2](f: (\/[A1, A2]) => Z, g: (Z) => \/[A1, A2])(implicit a1: F[A1], a2: F[A2]): F[Z]
    Definition Classes
    InvariantAlt
  39. final def xcoderiving3[Z, A1, A2, A3](f: (\/[A1, \/[A2, A3]]) => Z, g: (Z) => \/[A1, \/[A2, A3]])(implicit a1: F[A1], a2: F[A2], a3: F[A3]): F[Z]
    Definition Classes
    InvariantAlt
  40. final def xcoderiving4[Z, A1, A2, A3, A4](f: (\/[A1, \/[A2, \/[A3, A4]]]) => Z, g: (Z) => \/[A1, \/[A2, \/[A3, A4]]])(implicit a1: F[A1], a2: F[A2], a3: F[A3], a4: F[A4]): F[Z]
    Definition Classes
    InvariantAlt
  41. def xcoproduct1[Z, A1](a1: => F[A1])(f: (A1) => Z, g: (Z) => A1): F[Z]
    Definition Classes
    IsomorphismDecidableDecidableInvariantAlt
  42. def xcoproduct2[Z, A1, A2](a1: => F[A1], a2: => F[A2])(f: (\/[A1, A2]) => Z, g: (Z) => \/[A1, A2]): F[Z]
  43. def xcoproduct3[Z, A1, A2, A3](a1: => F[A1], a2: => F[A2], a3: => F[A3])(f: (\/[A1, \/[A2, A3]]) => Z, g: (Z) => \/[A1, \/[A2, A3]]): F[Z]
    Definition Classes
    IsomorphismDecidableDecidableInvariantAlt
  44. def xcoproduct4[Z, A1, A2, A3, A4](a1: => F[A1], a2: => F[A2], a3: => F[A3], a4: => F[A4])(f: (\/[A1, \/[A2, \/[A3, A4]]]) => Z, g: (Z) => \/[A1, \/[A2, \/[A3, A4]]]): F[Z]
    Definition Classes
    IsomorphismDecidableDecidableInvariantAlt
  45. final def xderiving0[Z](z: => Z): F[Z]
    Definition Classes
    InvariantApplicative
  46. final def xderiving1[Z, A1](f: (A1) => Z, g: (Z) => A1)(implicit a1: F[A1]): F[Z]
    Definition Classes
    InvariantApplicative
  47. final def xderiving2[Z, A1, A2](f: (A1, A2) => Z, g: (Z) => (A1, A2))(implicit a1: F[A1], a2: F[A2]): F[Z]
    Definition Classes
    InvariantApplicative
  48. final def xderiving3[Z, A1, A2, A3](f: (A1, A2, A3) => Z, g: (Z) => (A1, A2, A3))(implicit a1: F[A1], a2: F[A2], a3: F[A3]): F[Z]
    Definition Classes
    InvariantApplicative
  49. final def xderiving4[Z, A1, A2, A3, A4](f: (A1, A2, A3, A4) => Z, g: (Z) => (A1, A2, A3, A4))(implicit a1: F[A1], a2: F[A2], a3: F[A3], a4: F[A4]): F[Z]
    Definition Classes
    InvariantApplicative
  50. def xmap[A, B](ma: F[A], f: (A) => B, g: (B) => A): F[B]

    Converts ma to a value of type F[B] using the provided functions f and g.

    Converts ma to a value of type F[B] using the provided functions f and g.

    Definition Classes
    IsomorphismInvariantFunctorInvariantFunctor
  51. def xmapb[A, B](ma: F[A])(b: Bijection[A, B]): F[B]

    Converts ma to a value of type F[B] using the provided bijection.

    Converts ma to a value of type F[B] using the provided bijection.

    Definition Classes
    InvariantFunctor
  52. def xmapi[A, B](ma: F[A])(iso: Isomorphism.<=>[A, B]): F[B]

    Converts ma to a value of type F[B] using the provided isomorphism.

    Converts ma to a value of type F[B] using the provided isomorphism.

    Definition Classes
    InvariantFunctor
  53. def xproduct0[Z](z: => Z): F[Z]
  54. def xproduct1[Z, A1](a1: => F[A1])(f: (A1) => Z, g: (Z) => A1): F[Z]
  55. def xproduct2[Z, A1, A2](a1: => F[A1], a2: => F[A2])(f: (A1, A2) => Z, g: (Z) => (A1, A2)): F[Z]
  56. def xproduct3[Z, A1, A2, A3](a1: => F[A1], a2: => F[A2], a3: => F[A3])(f: (A1, A2, A3) => Z, g: (Z) => (A1, A2, A3)): F[Z]
  57. def xproduct4[Z, A1, A2, A3, A4](a1: => F[A1], a2: => F[A2], a3: => F[A3], a4: => F[A4])(f: (A1, A2, A3, A4) => Z, g: (Z) => (A1, A2, A3, A4)): F[Z]